ACSC/STAT 4703, Actuarial Models II

FALL 2021
Toby Kenney
Homework Sheet 1
Model Solutions

Basic Questions

1. Aggregate payments have a compund distribution. The frequency distribution is Binomial with $n=7$ and $p=0.4$. The severity distribution is Pareto with shape $\alpha=2.3$ and scale $\theta=600$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than 10,000.

The frequency distribution has mean $7 \times 0.4=2.8$ and variance $7 \times 0.4 \times$ $0.6=1.68$. The severity distribution has mean $\frac{600}{1.3}=461.538461538$ and variance $\frac{600^{2} \times 2.3}{1.3^{2} \times 0.3}=1633136.09467$
The mean of aggregate losses is given by $2.8 \times 461.538461538=1292.30769231$ and variance $2.8 \times 1633136.09467+1.68 \times 461.538461538^{2}=4930650.88757$. Setting these equal to the mean and variance of a Pareto distribution with parameters α and θ gives

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =1292.30769231 \\
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)} & =4930650.88757 \\
\frac{\alpha}{\alpha-2} & =\frac{4930650.88757}{1292.30769231^{2}}=2.95238095237 \\
\alpha & =3.02439024391 \\
\theta & =2616.13508444
\end{aligned}
$$

For these parameters, the probability that payments exceed $\$ 10,000$ is $\left(\frac{2616.13508444}{2616.13508444+10000}\right)^{3.02439024391}=0.0085809718139$.
2. Loss amounts follow a Gamma distribution with shape $\alpha=4.6$ and scale $\theta=500$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.880
1	0.064
2	0.035
3	0.021

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$1,000. Calculate the expected payment for this excess-of-loss reinsurance.

If there are n claims, then the total losses follow a gamma distribution with shape $\alpha=4.6 n$ and $\theta=500$. The expected payment on the excess of loss distribution in this case is therefore given by:

$$
\begin{aligned}
\mathbb{E}\left((X-1000)_{+}\right) & =\frac{500}{\Gamma(4.6 n)} \int_{2}^{\infty}(x-2) x^{4.6 n-1} e^{-x} d x \\
& =\frac{500}{\Gamma(4.6 n)}\left(\int_{2}^{\infty} x^{4.6 n} e^{-x} d x-2 \int_{2}^{\infty} x^{4.6 n-1} e^{-x} d x\right) \\
& =500\left(\frac{4.6 n}{\Gamma(4.6 n+1)} \int_{2}^{\infty} x^{4.6 n} e^{-x} d x-\frac{2}{\Gamma(4.6 n)} \int_{2}^{\infty} x^{4.6 n-1} e^{-x} d x\right) \\
& =500(4.6 n \text { pgamma }(2, \text { shape }=4.6 n+1, \text { lower.tail=FALSE })-2 \text { pgamma }(2, \text { shape }=4.6 \mathrm{n}+1, \text { lower.tail=FALSE }))
\end{aligned}
$$

This gives the following table

n	$P(N=n)$	$\mathbb{E}\left((S-1000)_{+} \mid N=n\right)$	$\mathbb{E}\left((S-1000)_{+} I_{N=n}\right)$
0	0.880	0.000	0.000
1	0.064	1318.512	84.385
2	0.035	3600.020	126.001
3	0.021	5900.000	123.900

So the total expected payment is $84.385+126.001+123.900=\$ 334.29$
3. Claim frequency follows a negative binomial distribution with $r=1.8$ and $\beta=2.2$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.69
2	0.24
3	0.06
4 or more	0.01

Use the recursive method to calculate the exact probability that aggregate claims are at least \$4,000.

Since the severity distribution is zero-truncated, the aggregate loss distribution is zero only if claim frequency is zero, which has probability
$\frac{1}{(1+2.2)^{1.8}}=0.123233856344$. Recall that for the negative binomial distribution, $a=\frac{\beta}{1+\beta}=\frac{2.2}{3.2}$ and $b=\frac{(r-1) \beta}{1+\beta}=\frac{1.76}{3.2}$.
The recurrence formula is

$$
f(x)=\sum_{k=1}^{x} \frac{2.2}{3.2}\left(1+\frac{0.8 k}{x}\right) f_{X}(k) f(x-k)
$$

Applying this gives:
$f(1)=\frac{2.2}{3.2} \times 1.8 \times 0.69 \times 0.123233856344=0.105226309086$
$f(2)=\frac{2.2}{3.2}(1.4 \times 0.69 \times 0.105226309086+1.8 \times 0.24 \times 0.123233856344)=0.106483877856$
$f(3)=\frac{2.2}{3 \times 3.2}(3.8 \times 0.69 \times 0.106483877856+4.6 \times 0.24 \times 0.105226309086+5.4 \times 0.06 \times 0.1232338563$
The probability that aggregate claims are at least $\$ 4,000$ is therefore

$$
\begin{aligned}
& 1-f(0)-f(1)-f(2)-f(3) \\
= & 1-0.123233856344-0.105226309086-0.106483877856-0.0997558701392 \\
= & 0.565300086575
\end{aligned}
$$

4. Use an arithmetic distribution $(h=1)$ to approximate a Weibull distribution with shape $\tau=0.5$ and scale $\theta=8.2$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 2,000 terms in the sum.]

Using the method of rounding, we set $p_{0}=P\left(X<\frac{1}{2}\right)$ and $p_{n}=P\left(n-\frac{1}{2}<X<n+\frac{1}{2}\right)$
for $n>0$. For the Weibull distribution, we have $P(X>x)=e^{-\left(\frac{x}{8.2}\right)^{0.5}}$, so

$$
\begin{aligned}
\mathbb{E}\left(X_{a}\right) & =\sum_{n=1}^{\infty} P\left(X_{a} \geqslant n\right) \\
& =\sum_{n=1}^{\infty} P\left(X>n-\frac{1}{2}\right) \\
& =\sum_{n=1}^{\infty} e^{-\left(\frac{2 n-1}{16.4}\right)^{0.5}}
\end{aligned}
$$

We compute this in R .
This gives $\mathbb{E}\left(X_{a}\right)=16.38116$.
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 5.5.

We have

$$
p_{0}+p_{1}+p_{2}+p_{3}+p_{4}+p_{5, l}=1-e^{-\left(\frac{5}{8.2}\right)^{0.5}}=0.5419921
$$

and

$$
\begin{aligned}
p_{5, u}+p_{6, l} & =e^{-\left(\frac{5}{8.2}\right)^{0.2}}-e^{-\left(\frac{6}{8.2}\right)^{0.2}} \\
& =0.03289435 \\
5 p_{5, u}+6 p_{6, l} & =\int_{5}^{6} x \times 0.5\left(\frac{x^{-0.5}}{8.2^{0.5}}\right) e^{-\left(\frac{x}{8.2}\right)^{0.5}} d x \\
& =0.5 \times 8.2^{-0.5} \int_{5}^{6} u e^{-\frac{u}{8.2^{0.5}}} d x \\
& =8.2^{-0.5} \int_{5^{0.5}}^{6^{0.5}} u^{2} e^{-\frac{u}{8.2^{0.5}}} d u \\
& =8.2^{-0.5}\left(\left[-8.2^{0.5} u^{2} e^{-\frac{u}{8.2^{0.5}}}\right]_{5^{0.5}}^{6^{0.5}}+2 \times 8.2^{0.5} \int_{5^{0.5}}^{6^{0.5}} u e^{-\frac{u}{8.2^{0.2}}} d u\right) \\
& \ldots \\
& =8.2^{-0.5}\left(8 . 2 ^ { 0 . 5 } \left(5 e^{-\frac{5^{0.5}}{8.2^{0.5}}}-6 e^{\left.-\frac{6^{0.5}}{8.2^{0.5}}\right)+2 \times 8.2^{0.5}\left(5^{0.5} e^{-\frac{5^{0.5}}{8.2^{0.5}}}-6^{0.5} e^{\left.\left.-\frac{6^{0.5}}{8.2^{0.5}}\right)+\ldots\right)}\right.} \begin{array}{l}
\\
\\
\\
\\
\end{array} e^{-\frac{5^{0.5}}{8.2^{0.5}}}(5+2 \times 8.1804649\right.\right.
\end{aligned}
$$

So

$$
p_{5, u}=6 \times 0.03289435-0.1804649=0.0169012
$$

Thus, $P\left(X_{a}>5.5\right)=1-0.5419921-0.0169012=0.4411067$

Standard Questions

5. An insurance company models loss frequency as Poisson with parameter $\lambda=6$, and loss severity as Pareto with shape $\alpha=2.5$ and scale $\theta=2400$. One reinsurance company uses a gamma distribution to model aggregate losses, fitted by the method of moments, and sells stop-loss reinsurance with attachment point $\$ 10,000$ for a loading of 100% based on the estimated payments under this model. Another reinsurance company uses a Pareto distribution to model aggregate losses and charges a 20\% loading.
(a) Which reinsurance company is cheaper if each policy includes a deductible of $\$ 500$.

With a deductible of $\$ 500$, the expected payment for each loss is

$$
\begin{aligned}
\int_{500}^{\infty}\left(\frac{2400}{2400+x}\right)^{2.5} d x & =\int_{2900}^{\infty} 2400^{3} u^{-2.5} d u \\
& =\frac{2400^{2.5}}{1.5}\left[-u^{-1.5}\right]_{2900}^{\infty} \\
& =\frac{2400^{2.5}}{1.5 \times 2900^{1.5}} \\
& =1204.59164994
\end{aligned}
$$

and the expected squared payment for each loss is

$$
\begin{aligned}
\int_{500}^{\infty} 2(x-500)\left(\frac{2400}{2400+x}\right)^{2.5} d x & =\int_{2900}^{\infty} 2(u-2900) 2400^{2.5} u^{-2.5} d u \\
& =2 \times 2400^{2.5} \int_{2900}^{\infty}\left(u^{-1.5}-2900 u^{-2.5}\right) d u \\
& =2 \times 2400^{2.5}\left(\frac{1}{0.5 \times 2900^{0.5}}-\frac{2900}{1.5 \times 2900^{1.5}}\right) \\
& =\frac{2 \times 2400^{2.5}}{\frac{3}{8} \times 2900^{0.5}} \\
& =27946526.2786
\end{aligned}
$$

For the aggregate loss distribution, the expected aggregate payment is $6 \times 1204.59164994=7227.54989964$ and the expected squared aggregate loss is $6 \times 27946526.2786=167679157.672$. The variance of aggregate loss is $167679157.672-7227.54989964^{2}=115441680.12$.
For the gamma distribution, the estimated parameters are given by solving

$$
\begin{aligned}
\alpha \theta & =7227.54989964 \\
\alpha \theta^{2} & =115441680.12 \\
\theta & =\frac{115441680.12}{7227.54989964}=15972.4501004 \\
\alpha & =\frac{7227.54989964}{15972.4501004}=0.452501016075
\end{aligned}
$$

The expected payment on the reinsurance with attachment point $a=$ 10000 is

$$
\begin{aligned}
& \int_{a}^{\infty}(x-a) \frac{x^{\alpha-1} e^{-\frac{x}{\theta}}}{\theta^{\alpha} \Gamma(\alpha)} d x \\
= & \int_{a}^{\infty} \frac{x^{\alpha} e^{-\frac{x}{\theta}}}{\theta^{\alpha} \Gamma(\alpha)} d x-a \int_{a}^{\infty} \frac{x^{\alpha-1} e^{-\frac{x}{\theta}}}{\theta^{\alpha} \Gamma(\alpha)} d x \\
= & \alpha \theta \int_{a}^{\infty} \frac{x^{\alpha} e^{-\frac{x}{\theta}}}{\theta^{\alpha+1} \Gamma(\alpha+1)} d x-a \int_{a}^{\infty} \frac{x^{\alpha-1} e^{-\frac{x}{\theta}}}{\theta^{\alpha} \Gamma(\alpha)} d x \\
= & 4239.77
\end{aligned}
$$

Thus, the premium is $2 \times 4239.77=\$ 8,479.54$.
For the company using the Pareto approximation, the estimated parameters are given by solving

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =7227.54989964 \\
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)} & =115441680.12 \\
\frac{\alpha}{\alpha-2} & =\frac{115441680.12}{7227.54989964^{2}}=2.20993978902 \\
\alpha & =\frac{2}{1-\frac{1}{2.20993978902}}=3.6529748159 \\
\theta & =7227.54989964 \times 4.6529748159=33629.6076637
\end{aligned}
$$

Using this approximation, the expected payment is

$$
\begin{aligned}
\int_{a}^{\infty}\left(\frac{\theta}{\theta+x}\right)^{\alpha} d x & =\int_{\theta+a}^{\infty} \theta^{\alpha} u^{-\alpha} d u \\
& =\theta^{\alpha}\left[\frac{u^{1-\alpha}}{1-\alpha}\right]_{a+\theta}^{\infty} \\
& =\frac{\theta^{\alpha}}{(\alpha-1)(a+\theta)^{\alpha-1}} \\
& =6353.963
\end{aligned}
$$

Thus, the premium is $1.2 \times 6353.963=\$ 7,624.76$.
Thus, the second reinsurer is cheaper.
(b) Show that a deductible $d=519.285$ is a local maximum for the second reinsurer's premium.

If the deductible is d, then the expected payment for each loss is

$$
\begin{aligned}
\int_{d}^{\infty}\left(\frac{2400}{2400+x}\right)^{2.5} d x & =\int_{2400+d}^{\infty} 2400^{3} u^{-2.5} d u \\
& =\frac{2400^{2.5}}{1.5}\left[-u^{-1.5}\right]_{2400+d}^{\infty} \\
& =\frac{2400^{2.5}}{1.5 \times(2400+d)^{1.5}}
\end{aligned}
$$

and the expected squared payment for each loss is

$$
\begin{aligned}
\int_{d}^{\infty} 2(x-d)\left(\frac{2400}{2400+x}\right)^{2.5} d x & =\int_{2400+d}^{\infty} 2(u-(2400+d)) 2400^{2.5} u^{-2.5} d u \\
& =2 \times 2400^{2.5} \int_{2400+d}^{\infty}\left(u^{-1.5}-(2400+d) u^{-2.5}\right) d u \\
& =2 \times 2400^{2.5}\left(\frac{1}{0.5 \times(2400+d)^{0.5}}-\frac{2400+d}{1.5 \times(2400+d)^{1.5}}\right) \\
& =\frac{2 \times 2400^{2.5}}{\frac{3}{8} \times(2400+d)^{0.5}}
\end{aligned}
$$

The expected aggregate loss and expected squared aggregate loss are therefore

$$
\frac{\theta}{\alpha-1}=6 \times \frac{2400^{2.5}}{1.5 \times(2400+d)^{1.5}}=4 \times \frac{2400^{2.5}}{(2400+d)^{1.5}}
$$

and

$$
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)}=6 \times \frac{2 \times 2400^{2.5}}{\frac{3}{8} \times(2400+d)^{0.5}}=32 \times \frac{2400^{2.5}}{(2400+d)^{0.5}}
$$

Thus, for the Pareto approximation, we have

$$
\frac{\alpha}{\alpha-2}=\frac{32 \times \frac{2400^{2.5}}{(2400+d)^{0.5}}}{\left(4 \times \frac{2400^{2.5}}{(2400+d)^{1.5}}\right)^{2}}=\frac{2 \times(2400+d)^{2.5}}{2400^{2.5}}
$$

which gives $\alpha=\frac{2}{1-\frac{2400^{2.5}}{2 \times(2400+d)^{2.5}}}=\frac{4 \times(2400+d)^{2.5}}{2 \times(2400+d)^{2.5}-2400^{2.5}}=2+\frac{2 \times 2400^{2.5}}{2 \times(2400+d)^{2.5}-2400^{2.5}}=$ 2.88355945774
$\alpha=2+\frac{2 \times 2400^{2.5}}{2 \times(2400+d)^{2.5}-2400^{2.5}}$ and

$$
\theta=\frac{2 \times(2400+d)^{2.5}+2400^{2.5}}{2 \times(2400+d)^{2.5}-2400^{2.5}} \times 4 \times \frac{2400^{2.5}}{(2400+d)^{1.5}}=13478.8452104
$$

From Part (a), the premium is

$$
\begin{gathered}
P=\frac{1.2 \theta^{\alpha}}{(\alpha-1)(a+\theta)^{\alpha-1}} \\
\log (P)=\log (1.2)+\alpha \log (\theta)-\log (\alpha-1)-(\alpha-1) \log (a+\theta) \\
\frac{2}{\alpha}=1-\frac{2400^{2.5}}{2 \times(2400+d)^{2.5}} \\
\frac{2}{\alpha^{2}} \frac{\partial \alpha}{\partial d}=-\frac{1.25 \times 2400^{2.5}}{(2400+d)^{3.5}} \\
\frac{\theta}{\alpha-1}=4 \times \frac{2400^{2.5}}{(2400+d)^{1.5}} \\
\frac{1}{\alpha-1} \frac{d \theta}{d d}-\frac{\theta}{(\alpha-1)^{2}} \frac{d \alpha}{d d}=-6 \times \frac{2400^{2.5}}{(2400+d)^{2.5}}
\end{gathered}
$$

We calculate
$\alpha=2.88355945774$
$\theta=13478.8452104$

$$
\begin{aligned}
\frac{\partial \log (P)}{\partial \alpha} & =\log (\theta)-\log (a+\theta)-\frac{1}{\alpha-1} \\
& =-0.926027490552 \\
\frac{\partial \log (P)}{\partial \theta} & =\frac{\alpha}{\theta}-\frac{\alpha-1}{a+\theta} \\
& =0.0000834807177338 \\
\frac{d \alpha}{d d} & =-\alpha^{2} \frac{5 \times 2400^{2.5}}{4(2400+d)^{3.5}} \\
& =-80 \alpha^{2}(\alpha-1)(\alpha-2)^{2} \theta^{-1} \\
& =-0.0821315911608 \\
\frac{1}{\alpha-1} \frac{d \theta}{d d}+80 \frac{\theta}{(\alpha-1)^{2}} \alpha^{2}(\alpha-1)(\alpha-2)^{2} \theta^{-1} & =-6 \times \frac{2400^{2.5}}{(2400+d)^{2.5}} \\
& =-12 \frac{\alpha-2}{\alpha} \\
\frac{d \theta}{d d} & =-80 \alpha^{2}(\alpha-2)^{2}-12 \frac{(\alpha-1)(\alpha-2)}{\alpha} \\
& =-187.016116675 \\
\frac{d \log (P)}{d d} & =\frac{\partial \log (P)}{\partial \alpha} \frac{d \alpha}{d d}+\frac{\partial \log (P)}{\partial \theta} \frac{d \theta}{d d} \\
& =-0.926027490552 \times-0.0821315911608+0.000083480717 \\
& =0.0604438716099
\end{aligned}
$$

Substituting these results, we get

$$
\begin{aligned}
\frac{d \log (P)}{d d}= & \frac{\partial \log (P)}{\partial \alpha} \frac{d \alpha}{d d}+\frac{\partial \log (P)}{\partial \theta} \frac{d \theta}{d d} \\
= & \left(\log \left(\frac{\theta}{a+\theta}\right)-\frac{1}{\alpha-1}\right)\left(-80 \alpha^{2}(\alpha-1)(\alpha-2)^{2} \theta^{-1}\right) \\
& \quad+\left(\frac{\alpha}{\theta}-\frac{\alpha-1}{a+\theta}\right)\left(-80 \alpha^{2}(\alpha-2)^{2}-12 \frac{(\alpha-1)(\alpha-2)}{\alpha}\right) \\
= & -80 \frac{\alpha^{2}(\alpha-1)(\alpha-2)^{2}}{\theta} \log \left(\frac{\theta}{a+\theta}\right)+\frac{80 \alpha^{2}(\alpha-2)^{2}}{\theta}(1-\alpha)-\frac{12 \alpha(\alpha-2)}{\theta} \\
& \quad+\frac{\alpha-1}{a+\theta}\left(-80 \alpha^{2}(\alpha-2)^{2}-12 \frac{(\alpha-1)(\alpha-2)}{\alpha}\right)
\end{aligned}
$$

6. The number of claims an insurance company receives follows a binomial distribution with $n=128$ and $p=0.64$. Claim severity follows a negative binomial distribution with $r=8.3$ and $\beta=24$. Calculate the probability that aggregate losses exceed \$20,000.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate 30000 terms of the recurrence for f_{s}.]

Claim frequency has mean $128 \times 0.64=81.92$ and variance $128 \times 0.64 \times$ $0.36=29.4912$. Claim severity has mean $8.3 \times 24=199.2$ and variance $8.3 \times 24 \times 25=4980$. Aggregate losses therefore have mean $81.92 \times 199.2=$ 16318.464 variance $81.92 \times 4980+29.4912 \times 199.2^{2}=1578191.29037$. This means that 6 standard deviations below the mean is $16318.464-$ $6 \sqrt{1578191.29037}=8780.89897848$ We therefore start the recurrence at $x=8780$.

For the binomial distribution with $n=128$ and $p=0.64$, we have $a=$ $-\frac{p}{1-p}=-\frac{0.64}{0.36}=-\frac{16}{9}$ and $b=(n+1) \frac{p}{1-p}=129 \times \frac{16}{9}=\frac{688}{3}$. The recurrence is therefore

$$
\begin{aligned}
f_{S}(x) & =\frac{1}{1+\frac{16}{9} f_{X}(0)} \sum_{y=1}^{x} \frac{16}{9}\left(\frac{129 y}{x}-1\right) f_{X}(y) f_{S}(x-y) \\
& =\frac{1}{1+\frac{16}{9} \times 25^{-8.3}} \sum_{y=1}^{x} \frac{16}{9}\left(\frac{129 y}{x}-1\right) 25^{-8.3}\binom{y+7.3}{y}\left(\frac{24}{25}\right)^{y} f_{S}(x-y)
\end{aligned}
$$

```
n<-seq_len(30000)
fx<-choose (n+7.3,n)*(24/25)^n/25^(8.3)
#define a vector of the secondary distribution.
fs}<-n #prepare a vector to store result
for(i in n){
    y<-seq_len(i)
    x<-i}+878
    fs [i+1]<-sum((129*y/x-1)*fx[y]*fs[i+1-y])*16/(9+16*25^(-8.3))
}
fs<-fs/sum(fs )
# Now fs [i]= fs (8779+i)
sum(fs[(20001-8779):30000])
#question asks for strict inequality.
```


This gives the probability that $S>20000$ as 0.001810746
(b) Using a suitable convolution.

If $N \sim B(128,0.64)$, we can say $N=N_{1}+N_{2}+\cdots+N_{8}$ with $N_{i} \sim$ $B(16,0.64)$. This gives $S=S_{1}+\cdots+S_{8}$, where $S_{1}=X_{1}+\cdots+X_{N_{1}}$ and so on. We therefore compute the distribution of each S_{i} using the recurrence:
$f_{S_{i}}(x)=\frac{1}{1+\frac{16}{9} \times 25^{-8.3}} \sum_{y=1}^{x} \frac{16}{9}\left(\frac{17 y}{x}-1\right) 25^{-8.3}\binom{y+7.3}{y}\left(\frac{24}{25}\right)^{y} f_{S}(x-y)$
We calculate $f_{S_{i}}(0)=P_{S_{i}}\left(f_{X}(0)\right)=\left(0.36+0.64 \times 25^{-8.3}\right)^{16}=7.95866111065 \times$ 10^{-8}.

```
g<-rep (0,15001)
g[1]=(0.36+0.64/2 *^(8.3))^(16) #f_{S_i } (0)
n<-seq_len(15001)
fx<-choose (n+7.3,n)*(24/25)^n/25^(8.3)
for(x in 2:15001){
    y<-1:(x-1)
    temp<-sum((17*y/(x-1)-1)*fx[y]*g[x-y])
    g[x]<-temp * 16/9/(1+16/9/25^8.3)
}
ConvolveSelf<-function(n){
    convolution<-vector("numeric", 2*length(n))
    for(i in 1:(length(n))){
        convolution[i]<-sum(n[1:i]*n[i:1])
    }
    for(i in 1:(length(n))){
        convolution [2*length(n)+1-i]<-\operatorname{sum}(n[length(n)+1-(1:i)]*n[length(n)+1-(i:1)])
    }
    return(convolution)
}
g2<-ConvolveSelf(g)
g4<-ConvolveSelf(g2)
g8<-ConvolveSelf(g4)
sum(g8[20002:120000])
# remember the indices of g8 are offset by 1 so that the first index is f_S (0).
```

This also gives the probability that $S>20000$ as 0.001810746 .
[The maximum difference in estimated probabilies between these two methods is 1.541219×10^{-07} for $x=15045$. The first method is faster, taking 7.044 seconds on my computer, while the second method takes 61.288 seconds.]

