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Homework Sheet 2

Model Solutions

Basic Questions

1. An insurance company has the following portfolio of medical malpractice
insurance policies:

Type of worker Number Probability mean claim standard deviation
of claim (millions) (millions)

Family Doctor 1,500 0.00015 $1.3 $0.9
Surgeon 600 0.00074 $4.4 $5.6
Nurse 2,400 0.00136 $0.5 $0.4

They model aggregate losses using a gamma distribution. Calculate the
cost of reinsuring losses above $10,000,000, if the loading on the reinsur-
ance premium is one standard deviation above the expected claim payment
on the reinsurance policy.

We calculate the mean and variance of the aggregate loss:

Type of worker E(N) Var(N) mean aggregate loss var aggregate loss
of claim (millions) (trillions)

Family Doctor 0.225 0.22496625 0.2925 0.5624429625
Surgeon 0.444 0.44367144 1.9536 22.5133190784
Nurse 3.264 3.25956096 1.632 1.33713024
Total 3.8781 24.4128922809

Using a Gamma approximation, the method of moments gives the follow-
ing parameters:

αθ = 3.8781

αθ2 = 24.4128922809

θ =
24.4128922809

3.8781
= 6.29506518164

α =
3.8781

6.29506518164
= 0.616053986432

The expected reinsurance payment in millions is therefore
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∫ ∞
a
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∫ ∞
a
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x
θ
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∫ ∞
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θ
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∫ ∞
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θ
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= 0.561106072057

The expected square of the reinsurance payment in trillions is

∫ ∞
a

(x− a)2
xα−1e−

x
θ

θαΓ(α)
dx

=

∫ ∞
a

xα+1e−
x
θ

θαΓ(α)
dx− 2a

∫ ∞
a

xαe−
x
θ

θαΓ(α)
dx+ a2

∫ ∞
a

xα−1e−
x
θ

θαΓ(α)
dx

= α(α+ 1)θ2
∫ ∞
a

xα+1e−
x
θ

θα+2Γ(α+ 2)
dx− 2aαθ

∫ ∞
a

xαe−
x
θ

θα+1Γ(α+ 1)
dx+ a2

∫ ∞
a

xα−1e−
x
θ

θαΓ(α)
dx

= 6.42318008585

Thus the standard deviation in millions, is
√

6.42318008585− 0.5611060720572 =
2.47150562649. The premium is therefore 561106.072057+2471505.62649 =
$3, 032, 611.70.

2. An insurance company is modelling claim data as following a log-normal
distribution with σ = 1. It collects the following sample of claims:

2.7 3.9 5.0 5.6 6.0 6.5 6.8 8.3 9.7 10.6 10.7 10.9

11.1 11.1 11.5 11.8 12.6 12.7 13.5 14.0 15.7 16.2 16.3

20.8 21.5 23.8 28.7 29.8 31.0 31.7 33.9 35.2 39.8 40.8

48.8 49.6 70.6 74.1 84.2 86.6

X<- c(2.7,3.9,5.0,5.6,6.0,6.5,6.8,8.3,9.7,10.6,10.7,

10.9,11.1,11.1,11.5,11.8,12.6,12.7,13.5,14.0,15.7,16.2,

16.3,20.8,21.5,23.8,28.7,29.8,31.0,31.7,33.9,35.2,39.8,

40.8,48.8,49.6,70.6,74.1,84.2,86.6)

The MLE for µ is 2.845. Graphically compare this empirical distribution
with the best log-normal distribution with σ = 1. Include the following
plots:

(a) Comparisons of F (x) and F ∗(x)
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x<−(0:100000)/1000
mu<−2.845
FnX<−rowMeans ( x%∗%t ( rep (1 ,40))> rep (1 ,100001)%∗% t (X) )
p l o t (x ,FnX, type=’ l ’ , x lab=”x ” , ylab=”F( x )” )
FX<−pnorm( log ( x)−mu)
FX[0]<−0 # The d e f a u l t formula works on my system , but in case i t

# f a i l s on some systems , we e x p l i c i t l y s e t F X ( 0 ) .
po in t s (x ,FX, type=’ l ’ , c o l=”red ”)
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(b) Comparisons of f(x) and f∗(x)

fx<−exp(−( l og ( x)−mu)ˆ2/2)/( s q r t (2∗ pi )∗x )
fx [1]<−0 # t h i s dens i ty formula i s undef ined at x=0

h i s t (X, p r o b a b i l i t y=TRUE, breaks=c (0 , 4 , 8 , 12 , 20 , 30 , 50 , 100 ) )
#These breaks produce a f a i r l y smooth curve . Other c h o i c e s are p o s s i b l e .

po in t s (x , fx , type=’ l ’ , c o l=”red ”)
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(c) A plot of D(x) against x.
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p lo t (x ,FX−FnX, type=’ l ’ , x lab=”x ” , ylab=”D( x )”)
a b l i n e (h=0)
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(d) A p-p plot of F (x) against F ∗(x).

p lo t (FnX,FX, type=’ l ’ , x lab=expr e s s i on (F [ n ] ( x ) ) , y lab=”F∗( x )” , ylim=c ( 0 , 1 ) )
a b l i n e (0 , 1 )
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3. For the data in Question 2, calculate the following test statistics for the
goodness of fit of the log-normal distribution with σ = 1 and µ = 2.845:

(a) The Kolmogorov-Smirnov test.
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X Fn(X−) Fn(X+) F ∗(X) −D(X−) D(X+)
2.7 0.000 0.025 0.03203099 0.0320309926 −0.007030993
3.9 0.025 0.050 0.06890135 0.0439013502 −0.018901350
5.0 0.050 0.075 0.10831069 0.0583106922 −0.033310692
5.6 0.075 0.100 0.13088161 0.0558816070 −0.030881607
6.0 0.100 0.125 0.14611538 0.0461153834 −0.021115383
6.5 0.125 0.150 0.16522750 0.0402274963 −0.015227496
6.8 0.150 0.175 0.17668371 0.0266837141 −0.001683714
8.3 0.175 0.200 0.23307899 0.0580789878 −0.033078988
9.7 0.200 0.225 0.28336497 0.0833649662 −0.058364966

10.6 0.225 0.250 0.31414113 0.0891411290 −0.064141129
10.7 0.250 0.275 0.31748036 0.0674803568 −0.042480357
10.9 0.275 0.300 0.32410970 0.0491097050 −0.024109705
11.1 0.300 0.325 0.33067325 0.0306732463 −0.005673246
11.1 0.325 0.350 0.33067325 0.0056732463 0.019326754
11.5 0.350 0.375 0.34360177 −0.0063982299 0.031398230
11.8 0.375 0.400 0.35312379 −0.0218762134 0.046876213
12.6 0.400 0.425 0.37778507 −0.0222149273 0.047214927
12.7 0.425 0.450 0.38079328 −0.0442067177 0.069206718
13.5 0.450 0.475 0.40426986 −0.0457301390 0.070730139
14.0 0.475 0.500 0.41841785 −0.0565821532 0.081582153
15.7 0.500 0.525 0.46361150 −0.0363884993 0.061388499
16.2 0.525 0.550 0.47608229 −0.0489177057 0.073917706
16.3 0.550 0.575 0.47853335 −0.0714666451 0.096466645
20.8 0.575 0.600 0.57532701 0.0003270146 0.024672985
21.5 0.600 0.625 0.58825285 −0.0117471539 0.036747154
23.8 0.625 0.650 0.62729048 0.0022904756 0.022709524
28.7 0.650 0.675 0.69563849 0.0456384940 −0.020638494
29.8 0.675 0.700 0.70867170 0.0336716970 −0.008671697
31.0 0.700 0.725 0.72206507 0.0220650714 0.002934929
31.7 0.725 0.750 0.72950503 0.0045050250 0.020494975
33.9 0.750 0.775 0.75124570 0.0012457040 0.023754296
35.2 0.775 0.800 0.76301855 −0.0119814473 0.036981447
39.8 0.800 0.825 0.79922800 −0.0007719985 0.025771999
40.8 0.825 0.850 0.80611872 −0.0188812798 0.043881280
48.8 0.850 0.875 0.85146339 0.0014633928 0.023536607
49.6 0.875 0.900 0.85519802 −0.0198019771 0.044801977
70.6 0.900 0.925 0.92102946 0.0210294573 0.003970543
74.1 0.925 0.950 0.92791205 0.0029120467 0.022087953
84.2 0.950 0.975 0.94387887 −0.0061211346 0.031121135
86.6 0.975 1.000 0.94698525 −0.0280147533 0.053014753

so the Kolmogorov-Smirnov statistic is 0.096466645.

(b) The Anderson-Darling test.

The Anderson-Darling statisic is given by
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A2 = −n+ n

k∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1)))

+ n

k∑
j=0

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))

We calculate this for our data set

Asq<−40∗(sum ( ( ( 4 0 : 1 ) / 4 0 ) ˆ 2∗ ( c (0 , l og (pnorm( log (X[1 :39 ] ) −mu, lower . t a i l=FALSE) ) )
−l og (pnorm( log (X)−mu, lower . t a i l=FALSE))))+
sum ( ( ( 1 : 4 0 ) / 4 0 ) ˆ 2∗ ( c ( l og (pnorm( log (X[2 :40 ] ) −mu)) ,0)− l og (pnorm( log (X)−mu))))−1)

This gives the Anderson-Darling statistic as 0.4102516.

(c) The chi-square test, dividing into the intervals 0–10, 10–20, 20–40 and
more than 40.

We have the following table:

Interval O E (O−E)2

E

[0, 10) 9 40× 0.2937664 = 11.750656 (9−11.750656)2
11.750656 = 0.643888173591

[10, 20) 14 40 (0.5599065− 0.2937664) = 10.645604 (14−10.645604)2
10.645604 = 1.0569595229

[20, 40) 10 40 (0.8006316− 0.5599065) = 9.629004 (10−9.629004)2
9.629004 = 0.0142941089251

[40,∞) 7 40(1− 0.8006316) = 7.974736 (7−7.974736)2
7.974736 = 0.11914002792

Total 1.83428183334

The Chi-squared statistic is 1.83428183334.

4. For the data in Question 2, perform a likelihood ratio test to determine
whether a log-normal distribution with fixed σ = 1, or a log-normal distri-
bution with σ freely estimated is a better fit for the data. [For the general
log-normal distribution, the MLE is σ2 = 0.7305957 and µ = 2.845.]

The log-likelihood is given by

40∑
i=1

− log(x)− log(σ)− 1

2
log(2π)− (log(X)− µ)2

2σ2

We calculate this for the two parameter values

mu<−2.845
l lGene ra l <−−20∗ l og (2∗ pi )−20∗ l og (0.7305957)−sum( log (X))−sum ( ( l og (X)−mu)ˆ2)/ (2∗0 .7305957)
l l s i gma1<−−20∗ l og (2∗ pi )−sum( log (X))−sum ( ( l og (X)−mu)ˆ2/2)
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Gives the log-likelihoods −164.266090367 and −165.155905697 respec-
tively. Thus the log-likelihood ratio is 2(−164.266090367−(−165.155905697)) =
1.77963066. This is compared to a chi-squared distribution with one degree
of freedom, so the critical value, at the 5% significance level, is 3.841459,
so we do not reject σ = 1.

5. For the data in Question 2, use AIC and BIC to choose between a log-
normal distribution with σ = 1 for the data and a transformed gamma
distribution. [The MLE for the transformed gamma distribution is α =
0.02372, θ = 87.77037 and τ = 26.26.]

The log-likelihood for the transformed gamma distribution is

40(log(τ)− ατ log(θ)− log(Γ(α))) + (ατ − 1)
∑

(log(X))−
∑(

X

θ

)τ
We substitute the MLE for α, θ and τ to get that the log-likelihood is

40(log(26.26)− 0.02372× 26.26 log(87.77037)− log(Γ(0.02372)))

+ (0.02372× 26.26− 1)
∑

(log(X))−
∑(

X

87.77037

)26.26

= −173.8605

The AIC for the log-normal with σ = 1 is−165.155905697−1 = −166.155905697,
and the BIC is −165.155905697− 1

2 log(40) = −167.000345424

For the transformed gamma distribution, the AIC is −173.8605 − 3 =
−176.8605 and the BIC is −173.8605− 3

2 log(40) = −179.393819181. Thus
the log-normal distribution is prefered by both AIC and BIC.

Standard Questions

6. A health insurer divides insureds into three categories: non-smoker; oc-
casional smoker; and heavy smoker. The number of claims made by an
individual follows a negative binomial distribution with parameters r and
β. It has the following portfolio of policies.

Category Number r β mean standard
insured of claim claim deviation

non-smoker 3,422 0.3 2.2 $860 $ 83,620
occasional smoker 1,053 0.9 2.4 $1,220 $113,190
heavy smoker 410 1.2 4.8 $1,740 $179,420

The insurance company models the aggregate losses as following a Pareto
distribution with the correct mean and variance. It wants to buy stop-
loss reinsurance for its policies. The reinsurance company uses the same
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Pareto distribution to model aggregate losses and sets its premium at 125%
of expected payments on the policy. The insurer sets the premium for
the part of the losses that it covers as one standard deviation above ex-
pected aggregate payments it makes on the portfolio (and directly adds the
reinsurer’s premium to this). What attachment point for the reinsurance
results in the smallest total premium for the policy? [You may need to nu-
merically solve the derivative equal to zero. You may find the substitution
t = θ

θ+a helpful.]

We calculate the expectation and variance of aggregate claims

Category E(N) Var(N) E(S) Var(S)
Non-smoker 2258.52 7227.264 2258.52× 860 = 1942327.2 7227.264× 8602 + 2258.52× 836202 = 15, 797, 604, 618, 000
Occasional Smoker 2274.48 7733.232 2274.48× 1220 = 2774865.6 7733.232× 12202 + 2274.48× 1131902 = 29, 152, 093, 542, 400
Heavy Smoker 2361.6 13697.28 2361.6× 1740 = 4109184 13697.28× 17402 + 2361.6× 1794202 = 76, 065, 002, 247, 100
Total 8826376.8 121014700407500

Setting these as the mean and variance of a Pareto distribution gives

θ

α− 1
= 8826376.8

αθ

(α− 1)2(α− 2)
= 121014700407500

α− 2

α
=

8826376.82

121014700407500
= 0.643764163799

α =
2

1− 0.643764163799
= 5.61425829958

θ = 4.61425829958× 8826376.8 = 40727182.4046

For reinsurance with attachment point a, the expected payment is

∫ ∞
a

(
θ

θ + x

)α
dx =

∫ ∞
a+θ

θαu−α dx

= θα
[
u1−α

(1− α)

]∞
a+θ

= θα
(a+ θ)1−α

(α− 1)

The expected squared payment on the reinsurance policy is
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∫ ∞
a

2(x− a)

(
θ

θ + x

)α
dx =

∫ ∞
a+θ

2(u− a− θ)θαu−α dx

= 2

∫ ∞
a+θ

θα(u1−α − (a+ θ)u−α) dx

= 2θα
[
u2−α

(2− α)
− (a+ θ)

u1−α

(1− α)

]∞
a+θ

= 2θα(a+ θ)2−α
(

1

(α− 2)
− 1

(α− 1)

)
= 2

θα

(α− 1)(α− 2)(a+ θ)α−2

Let I be the portion of loss covered by the insurer, and R the portion
covered by the reinsurer. The expected squared aggregate loss is

E((I +R)2) = 2
θ2

(α− 1)(α− 2)

E(I)2 + E(R2) + 2E(RI) = 2
θ2

(α− 1)(α− 2)

Now since whenever R > 0, we have I = a, this gives

E(R2) + E(I)2 + 2aE(R) = 2
θ2

(α− 1)(α− 2)

E(I2) + 2
θα

(α− 1)(α− 2)(a+ θ)α−2
+

2aθα

(α− 1)(a+ θ)α−1
= 2

θ2

(α− 1)(α− 2)

E(I2) = 2
θ2

(α− 1)(α− 2)
− 2

θα

(α− 1)(α− 2)(a+ θ)α−2
− 2aθα

(α− 1)(a+ θ)α−1

=
2θ2

(α− 1)(α− 2)

(
1−

(
θ

a+ θ

)α−2
− (α− 2)a

a+ θ

(
θ

a+ θ

)α−2)

=
2θ2

(α− 1)(α− 2)

(
1−

(
θ

a+ θ

)α−2(
(α− 2)

θ

a+ θ
− (α− 3)

))
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Substituting t = θ
a+θ we get

E(R) =
θ

α− 1
tα−1

E(I) =
θ

α− 1
− E(R)

=
θ

α− 1
(1− tα−1)

E(I2) =
2θ2

(α− 1)(α− 2)

(
1− tα−2 ((α− 2)t− (α− 3))

)
=

2θ2

(α− 1)(α− 2)

(
1− (α− 2)tα−1 + (α− 3)tα−2

)
Var(I) =

2θ2

(α− 1)(α− 2)

(
1− (α− 2)tα−1 + (α− 3)tα−2

)
− θ2

(α− 1)2
(1− tα−1)2

=
θ2

α− 1

(
2

α− 2
− 2tα−1 + 2

α− 3

α− 2
tα−2 − 1

α− 1
+

2tα−1

α− 1
− t2α−2

α− 1

)
=

θ2

α− 1

(
α

(α− 1)(α− 2)
− 2

α− 2

α− 1
tα−1 + 2

α− 3

α− 2
tα−2 − t2α−2

α− 1

)
The total premium is

E(I) +
√

Var(I) + 1.25E(R) =
θ

α− 1
+ 0.25E(R) +

√
Var(I)

We want to choose t to minimise this premium. This value is a solution
to

d

dt

(
θ

α− 1
+ 0.25E(R) +

√
Var(I)

)
= 0

1

2
√

Var(I)

dVar(I)

dt
− 0.25

dI

dt
= 0

θ2

2(α− 1)
√

Var(I)

(
2(α− 3)tα−3 − 2(α− 2)tα−2 − 2t2α−3

)
+
θtα−2

4
= 0

θ (tα + (α− 2)t− (α− 3)) = (α− 1)
t

4

√
Var(I) (1)

16θ2 (tα + (α− 2)t− (α− 3))
2

= (α− 1)2t2 Var(I)

= t2θ2
(

α

(α− 2)
− 2(α− 2)tα−1 + 2

(α− 1)(α− 3)

α− 2
tα−2 − t2α−2

)
16 (tα + (α− 2)t− (α− 3))

2
=

(
αt2

(α− 2)
− 2(α− 2)tα+1 + 2

(α− 1)(α− 3)

α− 2
tα − t2α

)
(2)

Numerically, we see that Equation (2) has two solutions: t = 0.635009 and
t = 0.739487. For the first of these, we have that tα+(α−2)t−(α−3) < 0,
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so this is not a solution to Equation (1). Therefore, the solution is t =
0.739487. This corresponds to a =

(
1

0.739487 − 1
)
θ = 0.35228881644θ =

$14, 197, 263.7353.

7. An insurance company collects a sample of 700 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the company believes that an inverse gamma distribution with α = 3.4 and
θ = 1, 000 may be appropriate to model these claims. It constructs the
following p-p plot to compare the sample to this distribution:
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(a) What was the smallest data point of the sample?

From the graph, we see that the largest value for which Fn(x) = 0 is
approximately F ∗(x) = 0.26.
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We solve F ∗(x) = 0.26. Recall that the inverse of X is modelled as a
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gamma distribution with α = 3.4. The 74th perecentile of a Gamma
distribution with α = 3.4 and θ = 1 is 4.33. Thus the 26th percentile of
the model distribution is 1000

4.33 = 230.95. Thus, this is approximately the
smallest value observed in the sample.

[In fact, the smallest value in the sample used to generate this plot is
233.8657.]

(b) Which of the following statements best describes the fit of the inverse
gamma distribution to the data:

(i) The inverse gamma distribution assigns too much probability to high
values and too little probability to low values.

(ii) The inverse gamma distribution assigns too much probability to low
values and too little probability to high values.

(iii) The inverse gamma distribution assigns too much probability to tail
values and too little probability to central values.

(iv) The inverse gamma distribution assigns too much probability to central
values and too little probability to tail values.

Justify your answer.

We have F ∗(x) > Fn(x) for small values of X, and F ∗(x) < Fn(x) for
larger values of x. This means that the model assigns too much proba-
bility to small values, and too much probability to very large values, and
therefore, too little probability to central values (iii).

[The difference between F ∗(x) and Fn(x) is much larger for small values
than for large values, and we have F ∗(x) = Fn(x) for x ≈ 0.65, so it is
not unreasonable to decide that (ii) is a better description of the fit.]

(c) Which of the following plots is the D(x) plot of this model on this
data? Justify your answer.
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0 500 1000 1500 2000

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

x

D
(x

)

0 1000 2000 3000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x

D
(x

)

0 1000 2000 3000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
(x

)

12



Since F ∗(x) > Fn(x) for smaller values of x and F ∗(x) < Fn(x) for larger
values, we have that D(x) > 0 for small x with D(x) = 0.26 when x ≈ 230
and D(x) < 0 for large x. This is what we see in (i) but not in the other
graphs. Therefore (i) must be the correct D(x) plot.
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