ACSC/STAT 4703, Actuarial Models II

FALL 2021
Toby Kenney

Homework Sheet 3
Model Solutions

Basic Questions

1. A homeowner's house is valued at $\$ 840,000$, but is insured at $\$ 360,000$. The insurer requires 70% coverage for full insurance. The home sustains $\$ 12,600$ from fire. The policy has a deductible of $\$ 5,000$, which decreases linearly to zero when the total cost of the loss is \$15,000. How much does the insurance company reimburse?
70% of $\$ 840,000$ is $\$ 588,000$, so the insurance pays $\frac{360000}{588000}=61.22 \%$ of claims. The deductible is $\frac{15000-12600}{10000} \times 5000=\$ 1,200$. The insurance therefore pays $\frac{360}{588}(12600-1200)=\$ 6,979.59$.
2. An inland marine insurance company has two lines of coverage with different expected loss ratios, and has the following data on recent claims:

Policy Type	Policy	Earned Year	Expected Premiums	Losses paid Lrain Ratio
	2018	$\$ 4,200,000$	0.78	$\$ 3,200,000$
	2019	$\$ 4,600,000$	0.77	$\$ 2,900,000$
	2020	$\$ 6,500,000$	0.78	$\$ 4,800,000$
Truck	2018	$\$ 6,600,000$	0.74	$\$ 3,200,000$
	2019	$\$ 7,700,000$	0.75	$\$ 2,250,000$
	2020	$\$ 9,300,000$	0.74	$\$ 2,150,000$

Calculate the loss reserves at the end of 2020.
We calculate the expected losses and the expected unpaid losses.

Policy Type	Policy Year	Expected total Losses	Losses paid to date	Reserves Needed
Train	2018	$\$ 3,276,000$	$\$ 3,200,000$	$\$ 76,000$
	2019	$\$ 3,542,000$	$\$ 2,900,000$	$\$ 642,000$
	2020	$\$ 5,070,000$	$\$ 4,800,000$	$\$ 270,000$
Truck	2018	$\$ 4,884,000$	$\$ 3,200,000$	$\$ 1,684,000$
	2019	$\$ 5,775,000$	$\$ 2,250,000$	$\$ 3,525,000$
	2020	$\$ 6,882,000$	$\$ 2,150,000$	$\$ 4,732,000$
Total			$\$ 10,929,000$	

So the total loss reserves needed at the end of 2020 are $\$ 10,929,000$.
3. The following table shows the paid losses on claims from one line of business of an insurance company over the past 5 years.

Accident	Earned	Development year				
year	premiums	0	1	2	3	4
2016	6990	3347	1052	327	532	285
2017	5473	2863	2096	188	525	
2018	11117	4331	2671	869		
2019	11931	3797	2101			
2020	15229	4542				

Assume that all payments on claims arising from accidents in 2016 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using
(a) The loss development triangle method

First we compute the cumulative losses

Accident	Development year				
year	0	1	2	3	4
2016	3347	4399	4726	5258	5543
2017	2863	4959	5147	5672	
2018	4331	7002	7871		
2019	3797	5898			
2020	4542				

Now we compute the loss development factors:

Mean

$$
\begin{array}{ll}
0 / 1 & \frac{22258}{14338}=1.55237829544 \\
1 / 2 & \frac{1744}{16360}=1.08459657702 \\
2 / 3 & \frac{1930}{9873}=1.10705965765 \\
3 / 4 & \frac{5543}{5258}=1.05420311906
\end{array}
$$

Using these values to complete the table gives the following cumulative losses:

Accident	Development year						
year	0	1	2	3	4		
LDF	1.55237829544	1.08459657702	1.10705965765	1.05420311906			
2017				5672	5979.440		
2018			7871	8713.667	9185.974		
2019		5898	6396.951	7081.806	7465.662		
2020	4542	7050.902	7647.384	8466.111	8925.000		

The future payments are the differences between consecutive years:

Accident	Development year				
year	0	1	2	3	4
2017				307	
2018			843	472	
2019		499	685	384	
2020	2509	596	819	459	

Average

The loss development factors are:

$0 / 1$	$\frac{1}{4}\left(\frac{4399}{3347}+\frac{4959}{2863}+\frac{7002}{4331}+\frac{5898}{3797}\right)=1.55411469785$
$1 / 2$	$\frac{1}{3}\left(\frac{4726}{4399}+\frac{5147}{4959}+\frac{7871}{7002}\right)=1.07878444772$
$2 / 3$	$\frac{1}{2}\left(\frac{5258}{4726}+\frac{5672}{5147}\right)=1.10728496712$
$3 / 4$	$\frac{5543}{5258}=1.05420311906$

Using these values to complete the table gives the following cumulative losses:

Accident	Development year				
year	0	1	2	3	4
LDF	1.55411469785	1.07878444772	1.10728496712	1.05420311906	
2017				5672	5979.440
2018			7871	8715.440	9187.844
2019		5898	6362.671	7045.290	7427.166
2020	4542	7058.789	7614.912	8431.877	8888.911

The future payments are the differences between consecutive years:

Accident	Development year				
year	0	1	2	3	4
2017				307.4401	
2018			464.6707	682.6189	381.8767
2019			516.789	556.1228	816.9656
2020		25157.0340			

(b) The Bornhuetter-Ferguson method with expected loss ratio 0.81.

Using the mean LDFs from part (a), we get the following:

Development	Cumulative proportion of losses paid		Proportion of losses paid	
Year	mean LDF	average LDF	mean LDF	average LDF
0	0.5089075	0.5109737	0.5089075	0.5109737
1	0.7900170	0.7941118	0.28110948	0.28313804
2	0.8568498	0.8566754	0.06683274	0.06256366
3	0.9485838	0.9485838	0.09173404	0.09190839
4	1.0000000	1.0000000	0.05141620	0.05141620

This gives the following reserves for mean LDF:

Accident	Earned	Expected Total	Development year				
year	premiums	claims	0	1	2	3	4
2017	5473	4433.13			826.0439	462.9911	
2018	11117	9004.77			645.8789	886.5279	496.8918
2019	11931	9664.11					
2020	15229	12335.49	3467.623	824.4145	1131.5844	634.2440	

and the following reserves for average LDF:

Accident	Earned	Expected Total	Development year				
year	premiums	payments	0	1	2	3	4
2017	5473	4433.13				827.6139	462.9911
2018	11117	9004.77			604.6221	888.2128	496.8918
2019	11931	9664.11					
2020	15229	12335.49		3492.646	771.7533	1133.7351	634.2440

4. An actuary is reviewing the following claims data:
No. of closed claims
Total paid losses on closed claims (000's)

Acc.	Development Year					Ult.	Acc. Year	Development Year				
Year	0	1	2	3	4			0	1	の	3	4
2016	1075	1	88	19		3721	2016	2424	10146			
2017	2392		-			5535	2017	5653	12384	1		
2018	4570					9311	2018	10942	22642			
2019	41978					1945	2019	11111	24353			
2020	3107					6769	2020	5983				

(a) Calculate tables of percentage of claims closed and cumulative average losses.

For percentages of claims closed, we divide the claims closed by the ultimate claims closed:

Acc.	Development Year				
Year	0	1	2	3	4
2016	28.9	73.2	88.6	97.3	98.5
2017	43.2	78.4	91.0	97.9	
2018	49.1	75.6	91.4		
2019	35.1	73.9			
2020	45.9				

For cumulative average losses, we just divide the second table by the first.

Acc.	Development Year			
Year	0	1	2	3
2016	2,255	3,726	3,047	3,376
2017	4,169			
2018	2,363	2,855	3,845	3,444
2015				
2,647	2,759			
2020	1,926			

(b) Adjust the total loss table to use the current disposal rate.

We multiply the aggregate cumulative losses by the current disposal rate divided by the original disposal rate.

Acc.	Development Year			
Year	0	1	2	3
2016	3851	40246	10365	12296
2017	6004	11679	19460	18659
2018	10233	22123	25571	
2019	14515	24353		
2020	5983			

(c) Use the chain ladder method, with mean loss development factors to estimate claim development based on the adjusted numbers. Compare this to the chain ladder method on aggregate payments on closed claims.

The mean loss development factors are:

Development	LDF	
Year	Adjusted	Original
$0 / 1$	$\frac{68401}{34603}=1.97673612115$	$\frac{69525}{30130}=2.30750082974$
$1 / 2$	$\frac{55366}{44048}=1.25762804214$	$\frac{5980}{4512}=1.21712565306$
$2 / 3$	$\frac{3095}{29825}=1.03788767812$	$\frac{3076}{2949}=1.04988268897$
$3 / 4$	$\frac{15284}{12296}=1.24300585556$	$\frac{15284}{12217}=1.25104362773$

Using these values, we estimate the following cumulative losses:

Acc. Year	Development Year					Acc. Year	Development Year				
	0	1	2	3	4		0	1	2	3	4
2016	3851.240	10245.52	10365.13	12295.81	15284.00	2016	2424	10146.00	10048.00	12217.00	15284.00
2017	6004.159	11679.28	19459.53	18659.00	23193.25	2017	5653	12384.00	19361.00	18659.00	23343.22
2018	10232.779	22122.90	25571.00	26539.83	32989.16	2018	10942	22642.00	25571.00	26846.55	33586.21
2019	14515.001	24353.00	30627.02	31787.40	39511.93	2019	11111	24353.00	29640.66	31119.22	38931.50
2020	5983.000	11826.81	14873.73	15437.26	19188.61	2020	5983	13805.78	16803.37	17641.56	22070.36

Thus the reserves are:

Acc. Year	Development Year					Acc. Year	Development Year				
	0	1	2	3	4		0	1	2	3	4
2017					4534	2017					4684
2018				969	6449	2018				1276	6740
2019			6274	1160	7725	2019			5288	1479	7812
2020		5844	3047	564	3751	2020		7823	2998	838	4429

Standard Questions

5. An insurance company has the following aggregate loss development data:

Accident	Earned	Development year				
year	premiums	0	1	2	3	4
2016	80929	12628	23111	39897	54644	58812
2017	80863	14270	26105	45201	61893	
2018	80874	14693	26991	46577		
2019	66143	13435	24570			
2020	91734	17247				

(a) Use this data to estimate the loss development factors using the average method, and use both the chain ladder method and the BornhuetterFergusson method with expected loss ratio 0.83 to estimate reserves for 2021.

The average loss development factors are given by

$0 / 1$	$\frac{1}{4}\left(\frac{23111}{12268}+\frac{26105}{14270}+\frac{26991}{14693}+\frac{24570}{13435}\right)=1.83132606001$
$1 / 2$	$\frac{1}{3}\left(\frac{3897}{23111}+\frac{45201}{265}+\frac{46577}{26991}\right)=1.72782582139$
$2 / 3$	$\frac{1}{2}\left(\frac{5644}{398897}+\frac{61893}{45201}\right)=1.36945532719$
$3 / 4$	$\frac{5882}{54644}=1.07627552888$

This gives us the expected cumulative loss table

Accident	Development year				
year	0	1	2	3	4
2017				61893	66613.92
2018			46577	63785.12	68650.36
2019		24570	42452.68	58137.05	62571.48
2020	17247	31584.88	54573.17	74735.52	80436.01

and the reserves

Accident	Development year				
year	0	1	2	3	4
2017				4721	
2018			17208	4865	
2019		17883	15684	4434	
2020	14338	22988	20162	5700	

Thus, the expected reserve payments in 2021 are $4721+17208+17883+$ $14338=\$ 54,150$.

For the Bornhuetter-Fergusson method, the cumulative proportion of losses paid is given by

Development Year	Cumulative proportion of losses paid	Proportion of losses paid
0	0.2144189	0.21441888
1	0.3926709	0.17825201
2	0.6784669	0.28579601
3	0.9291301	0.25066321
4	1.0000000	0.07086989

Thus, the expected loss payments are given in the following table:

Accident	Earned	Expected Total					
year	premiums	claims	0	1	2	3	4
2017	80863	67116				4757	
2018	80874	67125			16826	4757	
2019	66143	54899		15690	13761	3891	
2020	91734	76139	13572	21760	19085	5396	

so the total loss reserve for 2021 is $13572+15690+16826+4757=\$ 50,845$.
(b) How much would the loss reserves be changed if the losses for accident year 2017, development year 3 were increased by \$20,000?

The average loss development factors with this increase are given by

This gives us the expected cumulative loss table

Accident	Development year					
year	0	1	2	3	4	
2017				81893	88139.43	
2018			46577	74089.54	79740.76	
2019		24570	42452.68	67529.03	72679.84	
2020	17247	31584.88	54573.17	86808.96	93430.36	

which gives the following reserves

Accident	Development year			
year	0	1	2	3
2017				6246
2018			27513	5651
2019		17883	25076	5151
2020	14338	22988	32236	6621

Thus, the expected reserve payments in 2021 are $6246+27513+17883+$ $14338=\$ 65,980$.

For the Bornhuetter-Fergusson method, the cumulative proportion of losses paid is given by

Development Year	Cumulative proportion of losses paid	Proportion of losses paid
0	0.1845974	0.18459737
1	0.3380580	0.15346061
2	0.5841053	0.24604733
3	0.9291301	0.34502480
4	1.0000000	0.07086989

Thus, the expected loss payments are given in the following table:

Accident	Earned	Expected Total							Development year				
year	premiums	claims	0	1	2	3	4						
2017	80863	67116				4757							
2018	80874	67125			23160	4757							
2019	66143	54899		13508	18941	3891							
2020	91734	76139		11684	18734	26270	5396						

so the total loss reserve for 2021 is $11684+13508+23160+4757=\$ 53,109$.

