ACSC/STAT 4703, Actuarial Models II

FALL 2021
Toby Kenney
Homework Sheet 4

Model Solutions

1. An insurance company sells tennant's insurance. It estimates that the standard deviation of the aggregate annual claim is $\$ 82$ and the mean is $\$ 75$.
(a) How many years history are needed for an individual or group to be assigned full credibility? (Use $r=0.1, p=0.95$.)

The coefficient of variation for aggregate annual claim is $\frac{82}{75}$. For the average of n years of aggregate claims, the coefficient of variation is $\frac{82}{75 \sqrt{n}}$. Using $r=0.1$ and $p=0.95$, the standard for full credibility is obtained by solving:

$$
\begin{aligned}
P\left(\left|\frac{\bar{X}-\mu}{\mu}\right|<0.1\right) & >0.95 \\
2 \Phi\left(\frac{0.1 \times 75 \sqrt{n}}{82}\right)-1 & >0.95 \\
\frac{0.1 \times 75 \sqrt{n}}{82} & >1.959964 \\
n & >\left(\frac{82 \times 1.959964}{0.1 \times 75}\right)^{2} \\
& =459.199458093
\end{aligned}
$$

so 459 years are needed.
The standard net premium for this policy is $\$ 75$. An individual has claimed a total of $\$ 833$ in the last 3 years.
(b) What is the net Credibility premium for this individual, using limited fluctuation credibility?

The credibility of 3 years of experience is $Z=\sqrt{\frac{3}{459.199458093}}=0.080827648457$.
The premium for this individual is therefore $0.080827648457 \times \frac{833}{3}+0.919172351543 \times$ $75=\$ 91.38$.
2. A liability insurance company classifies companies as high, medium or low risk. Annual claims from high risk companies follow an inverse gamma
distribution with $\alpha=2.7$ and $\theta=8000$. Annual claims from medium risk companies follow an inverse gamma distribution with $\alpha=2.9$ and $\theta=$ 2500. Annual claims from low risk companies follow a Pareto distribution with $\alpha=3.3$ and $\theta=1200$. 5% of companies are high risk, 40% are medium risk and 55% are low risk.
(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen company.

- For a high-risk company, the expected claim is $\frac{8000}{1.7}=4705.88235294$. The variance is $\frac{8000^{2}}{1.7^{2} \times 0.7}=31636183.8853$
- For a medium-risk company, the expected claim is $\frac{2500}{1.9}=1315.78947368$. The variance is $\frac{2500^{2}}{1.9^{2} \times 0.9}=1923668.82118$
- For a low-risk company, the expected claim is $\frac{1200}{2.3}=521.739130435$. The variance is $\frac{3.3 \times 1200^{2}}{2.3^{2} \times 1.3}=690998.982114$

The overall expected claim amount is
$0.05 \times 4705.88235294+0.4 \times 1315.78947368+0.55 \times 521.739130435=1048.56642886$
The expected squared claim amount is
$0.05 \times\left(4705.88235294^{2}+31636183.8853\right)+0.4 \times\left(1315.78947368^{2}+1923668.82118\right)+0.55 \times\left(521.739130435^{2}+690998.982114\right)=4680829.82063$
The variance of the claim amount is therefore $4680829.82063-1048.56642886^{2}=$ 3581338.2649 .
(b) Given that a company's annual claims over the past 3 years are \$1300, $\$ 13,440$ and \$3,020, what are the expectation and variance of the company's claims next year?

The likelihood of an inverse gamma distribution is

$$
\left(\frac{\theta^{\alpha}}{\Gamma(\alpha)}\right)^{3} x^{-(\alpha+1)} e^{-\frac{\theta}{x}}
$$

The likelhood of the above sequence of 3 claims is given by

$$
\begin{aligned}
& \left(\frac{\theta^{\alpha}}{\Gamma(\alpha)}\right)^{3}(1300 \times 13440 \times 3020)^{-(\alpha+1)} e^{\theta\left(\frac{1}{1300}+\frac{1}{13440}+\frac{1}{3020}\right)} \\
= & \left(\frac{\theta^{\alpha}}{\Gamma(\alpha)}\right)^{3} 52765440000^{-(\alpha+1)} e^{0.00117476135895 \theta}
\end{aligned}
$$

The likelihood of a Pareto distribution is

$$
\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}
$$

The likelhood of the above sequence of 3 claims is given by

$$
\begin{aligned}
& \frac{\alpha^{3} \theta^{3 \alpha}}{(\theta+100)^{\alpha+1}(\theta+13440)^{\alpha+1}(\theta+3020)^{\alpha+1}} \\
= & \frac{3.3^{3} 1200^{9.9}}{(2500 \times 14640 \times 4220)^{4.3}} \\
= & 8.46494126734 \times 10^{-17}
\end{aligned}
$$

- The likelihood of these claims for a high-risk company is

$$
\left(\frac{8000^{2.7}}{\Gamma(2.7)}\right)^{3} 52765440000^{-3.7} e^{0.00117476135895 \times 8000}=1.969137 \times 10^{-13}
$$

- The likelihood of these claims for a medium-risk company is

$$
\left(\frac{2500^{2.9}}{\Gamma(2.9)}\right)^{3} 52765440000^{-3.9} e^{0.00117476135895 \times 2500}=4.830199 \times 10^{-15}
$$

- The likelihood of these claims for a low-risk company is

$$
1.40867099213 \times 10^{-15}
$$

The posterior probabilites are therefore:

$\frac{0.05 \times 1.969137 \times 10^{-13}}{0.05 \times 1.969137 \times 10^{-13}+0.4 \times 4.830199 \times 10^{-15}+0.55 \times 8.46494126734 \times 10^{-17}}$
$0.4 \times 4.830199 \times 10^{-15}$
$0.05 \times 1.969137 \times 10^{-13}+0.4 \times 4.830199 \times 10^{-15}+0.55 \times 8.46494126734 \times 10^{-17}$
and
$0.05 \times 1.969137 \times 10^{-13}+0.4 \times 4.830199 \times 10^{-15}+0.55 \times 8.46494126734 \times 10^{-17} 1.40867099213 \times 10^{-1}$

$0.832663825096,0.163398767087$ and 0.00395297227883 .
This means that the expected aggregate claim is
$0.832663825096 \times 4705.88235294+0.163398767087 \times 1315.78947368+0.00395297227883 \times 521.739130435=\$ 4,135.48$
The expected squared aggreagate claim is
$0.832663825096 \times\left(4705.88235294^{2}+31636183.8853\right)+0.163398767087 \times\left(1315.78947368^{2}+1923668.82118\right)$

$$
+0.00395297227883 \times\left(521.739130435^{2}+690998.982114\right)=45382945.2663
$$

The variance of aggregate claims is

$$
45382945.2663-4135.47879852^{2}=28,280,760.3733
$$

Standard Questions

3. A group health insurance company has the following standards for full credibilty: 480 person-years for frequency and 369 claims for severity.

The book estimates are 0.7 claims per person-year for claim frequency, and \$732 per claim for claim severity. Find the single standard in terms of person-years that gives the same premium for
(a) A company that has 304 claims from 291 person-years, with an average claim amount of $\$ 308$.

The credibility estimate for claim frequency is $\sqrt{\frac{291}{480}} \times \frac{304}{291}+\left(1-\sqrt{\frac{291}{480}}\right) \times$ $0.7=0.96836990957$. The credibility estimate for claim severity is $\sqrt{\frac{304}{369}} \times$ $308+\left(1-\sqrt{\frac{304}{369}}\right) \times 732=347.151794962$. Thus the credibility premium is $0.96836990957 \times 347.151794962=336.171352294$ for each person-year. Since the book premium is $0.7 \times 732=512.4$, and the experience is $\frac{304 \times 308}{291}=321.759450172$, a single standard would need credibility given by

$$
\begin{aligned}
321.759450172 Z+512.4(1-Z) & =336.171352294 \\
512.4-190.640549828 Z & =336.171352294 \\
190.640549828 Z & =176.228647706 \\
Z & =0.924402745717
\end{aligned}
$$

If n_{0} is the number of policy years for full credibility, then this gives

$$
\begin{aligned}
\sqrt{\frac{291}{n_{0}}} & =0.924402745717 \\
\frac{291}{n_{0}} & =0.854520436289 \\
n_{0} & =\frac{291}{0.854520436289} \\
& =340.54188483
\end{aligned}
$$

(b) A company that has 94 claims from 310 person-years, with an average claim amount of $\$ 958$.

The credibility estimate for claim frequency is $\sqrt{\frac{310}{480}} \times \frac{94}{310}+\left(1-\sqrt{\frac{310}{480}}\right) \times$ $0.7=0.381137353871$. The credibility estimate for claim severity is $\sqrt{\frac{94}{369}} \times 958+\left(1-\sqrt{\frac{94}{369}}\right) \times 732=846.066780231$. Thus the credibility premium is $0.381137353871 \times 846.066780231=322.467653815$ for each
person-year. Since the book premium is $0.7 \times 732=512.4$, and the experience is $\frac{94 \times 958}{310}=290.490322581$, a single standard would need credibility given by

$$
\begin{aligned}
290.490322581 Z+512.4(1-Z) & =322.467653815 \\
512.4-221.909677419 Z & =322.467653815 \\
221.909677419 Z & =189.932346185 \\
Z & =0.855899338839
\end{aligned}
$$

If n_{0} is the number of policy years for full credibility, then this gives

$$
\begin{array}{rlr}
\sqrt{\frac{310}{n_{0}}} & =0.855899338839 \\
\frac{310}{n_{0}} & =0.732563678225 \\
n_{0} & =\frac{310}{0.732563678225} \quad=423.171403681
\end{array}
$$

4. A medical liability insurer classifies doctors as "low-risk" and "high-risk". It estimates that 70\% of doctors are low-risk. Annual claims from low-risk doctors are modelled as following a Pareto distribution with $\alpha=3.8$ and $\theta=1,340$. Annual claims from high-risk doctors have mean $\$ 935$ and variance 1,503,060.
It is considering modelling claims for high-risk doctors using either a Pareto distribution or an inverse gamma distribution, with parameters fitted using the method of moments. Which of these distributions would result in a higher Bayes premium for a doctor whose annual claims in the previous two years were $\$ 146$ and $\$ 3,632$?

If this doctor is low-risk, then the likelihood of these claims is

$$
\frac{3.8^{2} \times 1340^{7.6}}{1486^{4.8} \times 4972^{4.8}}=9.04740433566 \times 10^{-9}
$$

For the Pareto distribution, the parameters are given by

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =935 \\
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)} & =1503060 \\
\frac{\alpha}{\alpha-2} & =\frac{1503060}{935^{2}} \\
\frac{2}{\alpha} & =1-\frac{935^{2}}{1503060} \\
\alpha & =\frac{3006120}{628835} \\
& =4.78045910294 \\
\theta & =3534.72926125
\end{aligned}
$$

The likelihood of the claims is

$$
\frac{4.78045910294^{2} \times 3534.72926125^{9.56091820588}}{3680.72926125^{5.78045910294} \times 7166.72926125^{5.78045910294}}=2.43344703218 \times 10^{-8}
$$

For the inverse gamma distribution, the parameters are given by

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =935 \\
\frac{\theta}{(\alpha-1)^{2}(\alpha-2)} & =1503060 \\
\frac{1}{\alpha-2} & =\frac{1503060}{935^{2}} \\
\alpha & =2+\frac{935^{2}}{1503060} \\
& =2.58163014118 \\
\theta & =1478.824182
\end{aligned}
$$

The likelihood of the claims is

$$
\frac{1478.824182^{5.16326028236} e^{-1478.824182\left(\frac{1}{146}+\frac{1}{3632}\right)}}{146^{3.58163014118} \times 3632^{3.58163014118} \Gamma(2.58163014118)^{2}}=9.76717 \times 10^{-10}
$$

Since the Pareto distribution assigns higher likelihood of being high-risk, the posterior probability of being high risk, and therefore the premium, is higher for the Pareto distribution.
[For the Pareto distribution, the posterior probability of being high-risk is

$$
\frac{0.3 \times 2.43344703218 \times 10^{-8}}{0.3 \times 2.43344703218 \times 10^{-8}+0.7 \times 9.04740433566 \times 10^{-9}}=0.535469848157
$$

so the premium is $0.535469848157 \times 935+0.464530151843 \times \frac{1340}{2.8}=\$ 722.98$.
For the inverse gamma distribution, the posterior probability of being high-risk is

$$
\frac{0.3 \times 9.76717 \times 10^{-10}}{0.3 \times 9.76717 \times 10^{-10}+0.7 \times 9.04740433566 \times 10^{-9}}=0.0442206970018
$$

so the premium is $0.0442206970018 \times 935+0.955779302998 \times \frac{1340}{2.8}=$ $\$ 498.76$.
]
5. An insurance company is pricing its policies for fire insurance. It insures 6 buildings, owned by 3 companies. Buildings 1, 2, 3 and 4 are in area A, while buildings 5 and 6 are in area B. Buildings 1, 2, and 5 are owned by company X, buildings 3 and 6 are owned by company Y, and building 4 is owned by company Z. The insurance company is setting a greatest accuracy credibility premium for each building. It will use a formula $\hat{X_{i, 2}}=\beta_{i, 0}+\sum_{j=1}^{6} \alpha_{i j} X_{j, 1}$ where $X_{i, k}$ is the total loss for building i in year j, to calculate the credibility premium. It makes the following modelling assumptions:

- The prior expected aggregate claims and variances of aggregate claims for each building are given in the following table:

Building	Expected aggregate claims	Variance of aggregate claims
1	$\$ 4,904$	483,600
2	$\$ 2,048$	301,500
3	$\$ 3,360$	289,700
4	$\$ 11,421$	$1,004,200$
5	$\$ 9,310$	$1,143,000$
6	$\$ 5,082$	821,100

- For a given building, the correlation between the losses in different years is 0.45. (Recall $\left.\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}\right)$
- The correlation between aggregate claims for buildings in the same region in different years is 0.32 if owned by the same company, and 0.22 if owned by different companies.
- The correlation between aggregate claims for buidings owned by the same company in different regions is 0.25.
- Aggregate claims for buildings in different regions owned by different companies are independent.

Find a set of equations which can determine the values of $\beta_{1,0}$, and $\alpha_{1 j}$. [You do not need to solve these equations.]

We use our standard equations:

$$
\begin{aligned}
\mathbb{E}\left(X_{i, 2}\right) & =\beta_{i, 0}+\sum_{j=1}^{6} \alpha_{i} \mathbb{E}\left(X_{i, 1}\right) \\
\operatorname{Cov}\left(X_{i, 2}, X_{j, 1}\right) & =\sum_{i=1}^{6} \alpha_{i j} \operatorname{Cov}\left(X_{i, 2}, X_{j, 1}\right)
\end{aligned}
$$

Substituting in the numbers given, these equations become:

$$
\begin{array}{r}
4904=\beta_{1,0}+4904 \alpha_{11}+2048 \alpha_{12}+3360 \alpha_{13}+11421 \alpha_{14}+9310 \alpha_{15}+5082 \alpha_{16} \\
0.45 \times 483600=483600 \alpha_{1,1}+0.32 \times \sqrt{483600 \times 301500} \alpha_{1,2}+0.22 \times \sqrt{483600 \times 289700} \alpha_{1,3} \\
\\
+0.22 \times \sqrt{483600 \times 1004200} \alpha_{1,4}+0.25 \times \sqrt{483600 \times 1143000} \alpha_{1,5}+0 \times \sqrt{483600 \times 821100} \alpha_{1,6} \\
0.32 \times \sqrt{483600 \times 301500}=0.32 \times \sqrt{301500 \times 483600} \alpha_{1,1}+301500 \alpha_{1,2}+0.22 \times \sqrt{301500 \times 289700} \alpha_{1,3} \\
\\
+0.22 \times \sqrt{301500 \times 1004200} \alpha_{1,4}+0.25 \times \sqrt{301500 \times 1143000} \alpha_{1,5}+0 \times \sqrt{301500 \times 821100} \alpha_{1,6} \\
0.22 \times \sqrt{289700 \times 483600}=0.22 \times \sqrt{289700 \times 483600} \alpha_{1,1}+0.22 \times \sqrt{289700 \times 301500} \alpha_{1,2}+289700 \alpha_{1,3}+ \\
0.22 \times \sqrt{289700 \times 1004200} \alpha_{1,4}+0 \times \sqrt{289700 \times 1143000} \alpha_{1,5}+0.25 \times \sqrt{289700 \times 821100} \alpha_{1,6} \\
0.22 \times \sqrt{289700 \times 483600}=0.22 \times \sqrt{1004200 \times 483600} \alpha_{1,1}+0.22 \times \sqrt{1004200 \times 301500} \alpha_{1,2}+0.22 \times \sqrt{1004200 \times 289700} \alpha_{1,3} \\
\\
\\
+1004200 \alpha_{1,4}+0 \times \sqrt{1004200 \times 1143000} \alpha_{1,5}+0 \times \sqrt{1004200 \times 821100} \alpha_{1,6} \\
0.25 \times \sqrt{1143000 \times 483600}=0.25 \times \sqrt{1143000 \times 483600} \alpha_{1,1}+0.25 \times \sqrt{1143000 \times 301500} \alpha_{1,2}+0 \times \sqrt{1143000 \times 289700} \alpha_{1,3} \\
\\
\\
\quad+0 \times \sqrt{1143000 \times 1004200} \alpha_{1,4}+1143000 \alpha_{1,5}+0.22 \times \sqrt{1143000 \times 821100} \alpha_{1,6} \\
0 \times \sqrt{821100 \times 483600=0 \times \sqrt{821100 \times 483600} \alpha_{1,1}+0 \times \sqrt{821100 \times 301500} \alpha_{1,2}+0.25 \times \sqrt{821100 \times 289700} \alpha_{1,3}} \\
\\
\\
+0 \times \sqrt{821100 \times 1004200} \alpha_{1,4}+0.22 \times \sqrt{821100 \times 1143000} \alpha_{1,5}+821100 \alpha_{1,6}
\end{array}
$$

