ACSC/STAT 4703, Actuarial Models II

FALL 2022
Toby Kenney

Homework Sheet 4

Due: Thursday 3rd November: 17:30

1. An insurance company sells health insurance. It estimates that the standard deviation of the aggregate annual claim is $\$ 32$ and the mean is $\$ 195$.
(a) How many years history are needed for an individual or group to be assigned full credibility? (Use $r=0.1, p=0.9$.)
The standard net premium for this policy is $\$ 195$. An individual has claimed a total of $\$ 133$ in the last 4 years.
(b) What is the net Credibility premium for this individual, using limited fluctuation credibility?
2. A fire insurance company classifies companies as high, medium or low risk. Annual claims from high risk companies follow a Pareto distribution with $\alpha=4.7$ and $\theta=12000$. Annual claims from medium risk companies follow a Weibull distribution with $\tau=0.6$ and $\theta=1500$. Annual claims from low risk companies follow a gamma distribution with $\alpha=0.7$ and $\theta=2000$. 15% of companies are high risk, 60% are medium risk and 25% are low risk.
(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen company.
(b) Given that a company's annual claims over the past 3 years are $\$ 700$, $\$ 1,440$ and $\$ 320$, what are the expectation and variance of the company's claims next year?

Standard Questions

3. A home insurance company sets the standard for full credibility as 622 house-years. The book estimates are 0.07 claims per house-year for claim frequency and $\$ 4,321$ per claim for claim severity.
The company changes the standard to 540 house-years for frequency and 86 claims for severity. For one policyholder with 11 person-years of history, this change results in the annual premium reducing from $\$ 510$ to $\$ 449.11$. How many claims did this policyholder make during the last 11 years?
4. An automobile insurer classifies drivers as "low-risk" and "high-risk". It estimates that 85% of drivers are low-risk. Annual claims from low-risk
drivers are modelled as following a Weibull distribution with $\tau=0.6$ and $\theta=385$ [mean 579.2616, variance 1037098]. Annual claims from high-risk drivers have mean $\$ 1205$ and variance 1,830,400.

It uses a Bayesian premium for each driver. For a particular driver with one year's experience, the net premium when modelling claims for highrisk drivers as following a gamma distribution (with $\alpha=0.7932829$ and $\theta=1519.004$ to match the given mean and variance) is $\$ 100$ more than when modelling claims for high-risk drivers as following an inverse gamma distribution (with $\alpha=2.7932829$ and $\theta=2160.906$ to match the given mean and variance). What were this driver's aggregate claims for the year?
5. An insurance company is pricing a professional liability insurance policy for a company. It has 5 years of past history for this company, and the annual claims from year i are denoted X_{i}. It uses the formula $\hat{X}_{6}=$ $\alpha_{0}+\sum_{i=1}^{5} \alpha_{i} X_{i}$. It makes the following assumptions about the losses each year:

- The expected aggregate claims was $\$ 3052$ in Year 1 and has been increasing by 4% inflation each year since then.
- The coefficient of variation for aggregate claims is 2.7 in each year.
- The correlation between losses in years i and j is $0.84\left(0.93^{|i-j|}\right)$ if $i, j \neq 3$ and $0.62\left(0.93^{|-3|}\right)$ if $j=3$. The change in Year 3 is to cover parental leave for one of the consultants working for the company. $\left(\right.$ Recall $\left.\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}\right)$

Find a set of equations which can determine the values of α_{i} for $i=$ $0,1, \ldots, 5$. [You do not need to solve these equations.]

