ACSC/STAT 4703, Actuarial Models II

FALL 2022
Toby Kenney

Homework Sheet 3
Model Solutions

Basic Questions

1. A homeowner's house is insured at \$270,000. The insurer requires 75\% coverage for full insurance. The home sustains \$9, 600 damage from wind. The policy has a deductible of \$4,000, which decreases linearly to zero when the total cost of the loss is $\$ 12,000$. The insurance company reimburses $\$ 6,240$. What value are they using for the houses value?

The deductible is $\frac{12000-9600}{8000} \times 4000=\$ 1200$. Thus if the home were fully insured, the insurer would pay $9600-1200=\$ 8,400$. Thus the home has $\frac{6240}{8400}=0.742857142857$ coverage. This means that for full coverage a value of $\frac{270000}{0.742857142857}=\$ 363461.538462$ is required. Since this is 75% of the homes value, the homes value must be $\frac{363461.538462}{0.75}=\$ 484615.38$
2. An insurance company has two lines of coverage in its Tennant's Insurance packages, with different expected loss ratios, and has the following data on recent claims:

Policy Type	Policy Year	Earned Premiums	Expected Loss Ratio	Losses paid to date
Apartment	2019	$\$ 6,400,000$	0.84	$\$ 5,200,000$
	2020	$\$ 6,800,000$	0.85	$\$ 4,900,000$
	2021	$\$ 6,700,000$	0.84	$\$ 4,600,000$
House	2019	$\$ 3,500,000$	0.77	$\$ 2,100,000$
	2020	$\$ 4,200,000$	0.78	$\$ 1,800,000$
	2021	$\$ 5,300,000$	0.76	$\$ 1,900,000$

Calculate the loss reserves at the end of 2021.
We calculate the expected losses and the expected unpaid losses.

Policy Type	Policy Year	Expected total Losses	Losses paid to date	Reserves Needed
Apartment	2019	$\$ 5,376,000$	$\$ 5,200,000$	$\$ 176,000$
	2020	$\$ 5,780,000$	$\$ 4,900,000$	$\$ 880,000$
	2021	$\$ 5,628,000$	$\$ 4,600,000$	$\$ 1,028,000$
House	2019	$\$ 2,695,000$	$\$ 2,100,000$	$\$ 595,000$
	2020	$\$ 3,276,000$	$\$ 1,800,000$	$\$ 1,476,000$
	2021	$\$ 4,028,000$	$\$ 1,900,000$	$\$ 2,128,000$
Total			$\$ 6,283,000$	

So the total loss reserves needed at the end of 2021 are $\$ 6,283,000$.
3. The following table shows the cumulative paid losses (in thousands) on claims from one line of business of an insurance company over the past 5 years.

Accident	Earned	Development year					
year	premiums	0	1	2	3	4	
2017	7178	2294	3726	4310	4855	5232	
2018	8589	2840	5101	4975	5691		
2019	6788	3268	4221	5198			
2020	8332	3380	4933				
2021	10094	3494					

Assume that all payments on claims arising from accidents in 2016 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using
(a) The loss development triangle method

First we compute the loss development factors:

Mean

$$
\begin{array}{ll}
0 / 1 & \frac{17981}{11782}=1.52614157189 \\
1 / 2 & \frac{1483}{1304}=1.10997854077 \\
2 / 3 & \frac{1046}{9285}=1.13581044696 \\
3 / 4 & \frac{5232}{4855}=1.07765190525
\end{array}
$$

Using these values to complete the table gives the following cumulative losses:

Accident	Development year				
year	0	1	2	3	
LDF	1.55237829544	1.08459657702	1.10705965765	1.05420311906	
2018				5691	
6133					
2019			5198	5904	
6362					
2020	4933	5476	6219	6702	
2021	3494	5332	5919	6723	

The future payments are the differences between consecutive years:

Accident	Development year				
year	0	1	2	3	4
2018			442		
2019			706	458	
2020		543	743	483	
2021	1838	587	804	522	

Average

The loss development factors are:

$0 / 1$	$\frac{1}{4}\left(\frac{3726}{2294}+\frac{5101}{2840}+\frac{4221}{3268}+\frac{4933}{3380}\right)=1.54286175591$
$1 / 2$	$\frac{1}{3}\left(\frac{4310}{3726}+\frac{4975}{5101}+\frac{5198}{4221}\right)=1.1211657155$
$2 / 3$	$\frac{1}{2}\left(\frac{4855}{3310}+\frac{5691}{4975}\right)=1.135184857$
$3 / 4$	$\frac{5232}{4855}=1.07765190525$

Using these values to complete the table gives the following cumulative losses:

Accident	Development year				
year	0	1	2	3	4
LDF	1.54286175591	1.1211657155	1.135184857	1.07765190525	
2018				5691.000	6133
2019			5198	5900.691	6359
2020		4933	5531	6278	6766
2021	3494	5391	6044	6861	7394

The future payments are the differences between consecutive years:

Accident	Development year				
year	0	1	2	3	4
2018				442	
2019			703	458	
2020		598	747	488	
2021		1897	653	817	533

(b) The Bornhuetter-Ferguson method with expected loss ratio 0.74.

Using the mean and average LDFs from part (a), we get the following:

Development	Cumulative proportion of losses paid		Proportion of losses paid	
Year	mean LDF	average LDF	mean LDF	average LDF
0	0.4822878	0.4725612	0.48228775	0.47256123
1	0.7360394	0.7290966	0.25375164	0.25653542
2	0.8169879	0.8174382	0.08094854	0.08834152
3	0.9279434	0.9279434	0.11095550	0.11050526
4	1.0000000	1.0000000	0.07205657	0.07205657

This gives the following reserves for mean LDF:

Accident	Earned	Expected Total	Development year				
year	premiums	claims	0	1	2	3	4
2018	8589	6355.86			458		
2019	6788	5023.12			557	362	
2020	8332	6165.68		499	684	444	
2021	10094	7469.56		1895	605	829	538

and the following reserves for average LDF:

Accident	Earned	Expected Total	Development year				
year	premiums	payments	0	1	2	3	4
2018	8589	6355.86			458		
2019	6788	5023.12			555	362	
2020	8332	6165.68		545	681	444	
2021	10094	7469.56		1916	660	825	538

4. An actuary is reviewing the following claims data:
No. of closed claims
Total paid losses on closed claims (000's)

Acc.	Development Year				4 Ult.		Acc. Year	Development Year					
Year	0	1	2	3			0	1	2	3	4		
2017	4296	8282	9	86		10792		2017	2156	8956	9879	76	
2018	6067	9875	90			12449	2018	3597	7603	9046			
2019	5636	9684				12995	2019	10125	13866	17338			
2020	7090	11637				14166	2020	10460	7351				
2021	9329					17850	2021	10124					

(a) Calculate tables of percentage of claims closed and cumulative average losses.

For percentages of claims closed, we divide the claims closed by the ultimate claims closed:

```
                    Acc. Development Year
                    \(\begin{array}{llllll}\text { Year } & 0 & 1 & 2 & 3 & 4\end{array}\)
                    201739.876 .790 .997 .297 .6
201848.779 .392 .397 .4
201943.474 .591 .1
202050.082 .1
202152.3
```

For cumulative average losses, we just divide the second table by the first.

Acc.	Development Year				
Year	0	1	2	3	4
2017	502	1081	1007	980	1972
2018	593	770	787	1448	
2019	1796	1432	1464		
2020	1475	632			
2021	1085				

(b) Adjust the total loss table to use the current disposal rate.

We multiply the aggregate cumulative losses by the current disposal rate divided by the original disposal rate.

Acc.	Development Year				
Year	0	1	2	3	4
2017	2831	9587	9906	10300	20762
2018	3857	7874	8933	17557	
2019	12201	15285	17338		
2020	10923	7351			
2021	10124				

(c) Use the chain ladder method, with average loss development factors to estimate claim development based on the adjusted numbers. Compare this to the chain ladder method on aggregate payments on closed claims.

The average loss development factors are:

Development	LDF	
Year	Adjusted	Original
$0 / 1$	$\frac{1}{4}\left(\frac{9587}{2831}+\frac{7874}{3857}+\frac{15285}{12201}+\frac{7351}{10923}\right)=1.83841717139$	$\frac{1}{4}\left(\frac{8956}{2156}+\frac{7603}{3597}+\frac{13866}{10125}+\frac{7351}{10460}\right)=2.08498717057$
$1 / 2$	$\frac{1}{3}\left(\frac{9906}{9587}+\frac{8933}{7874}+\frac{17338}{15285}\right)=1.1006940607$	$\frac{1}{3}\left(\frac{9879}{8956}+\frac{9046}{7603}+\frac{17338}{13866}\right)=1.18108318592$
$2 / 3$	$\frac{1}{2}\left(\frac{90300}{99306}+\frac{175553}{8933}\right)=1.50259151574$	$\frac{1}{2}\left(\frac{10276}{9879}+\frac{19557}{9046}\right)=1.49052204569$
$3 / 4$	$\frac{20762}{10300}=2.01572815534$	$\frac{20762}{10276}=2.0204359673$

Using these values, we estimate the following cumulative losses:

Acc. Year	Development Year					Acc Yea	Development Year				
	0	1	2	3	4		0	1	2	3	4
2017					20762	2017					20762.00
2018				17557	35390.92	2018				17557	35472.79
2019			17338	26051.61	52514.12	2019			17338	25842.67	52213.46
2020		7351	8091.421	12157.95	24507.66	2020		7351	8682.142	12940.92	26146.31
2021	10124	18612.333	20487.038	30783.27	62052.07	2021		21108.41	24930.788	37159.89	75079.18
Thus the reserves are:											
Acc. Year		Development Year				Acc. Year		Development Year			
		$0 \quad 1$	2	3	$3 \quad 4$			$0 \quad 1$	2	3	$3 \quad 4$
	2018				17833.92						17915.79
	2019			8713.6073	326462.51					8504.671	126370.79
	2020		740.4206	4066.5280	- 12349.71				1331.142	4258.782	13205.39
	2021	8488.333	1874.7049	10296.2281	131268.80			10984.41	3822.378	12229.101	1 37919.29

Standard Questions

5. An insurance company has the following aggregate loss development data:

Accident	Earned	Development year				
year	premiums	0	1	2	3	4
2017	82864	17592	39598	57167	63803	68242
2018	112460	21110	47601	68628	76510	
2019	132278	25470	57409	82935		
2020	154944	31635	71278			
2021	156018	27332				

From this table, it calculates the following mean loss development factors:
Development year LDF

$0 / 1$	2.253343
$1 / 2$	1.443419
$2 / 3$	1.115410
$3 / 4$	1.069574

After adding a loss payment in development year 3 for loss year 2018, the reserve needed for loss year 2019, development year 3, using the chainladder method increases by 13094.77. How much increase in the reserve would the additional loss cause if the company were using the BornhuetterFergusson method with expected loss ratio 0.79 to calculate reserves?

For the current data, the reserve needed for loss year 2019, development year 3 is $82935 \times(1.115410-1)=9571.52835$. With the added loss, it is therefore $9571.52835+13094.77=22666.29835$, so the predicted cumulative payments are $82935+22666.29835=105601.29835$. Thus the new LDF for development year $2 / 3$ is $\frac{105601.29835}{82935}=1.27330196359$. No other LDFs are changed by the additional payment.
[We do not need to calculate the loss that was added to the 2018 Development Year 3 payments, but we can do so from the new LDF. If the added loss is x, then we have $\frac{140313+x}{125795}=1.27330196359$, which gives $x=19862.02051$.]
Under Bornhuetter-Fergusson, the expected total payments for accident year 2019 are $132278 \times 0.79=104499.62$, and the expected proportion of payments made in development year 3 for the original data is $\frac{1}{1.069574}-$ $\frac{1}{1.069574 \times 1.115410}=0.096738215101$. For the data with the additional payment, it is $\frac{1}{1.069574}-\frac{1}{1.069574 \times 1.27330196359}=0.200678342779$. Therefore, the change in reserves is $104499.62(0.200678342779-0.096738215101)=$ $\$ 10,861.70$.

