ACSC/STAT 4703, Actuarial Models II

FALL 2022

Toby Kenney

Homework Sheet 7

Model Solutions

Basic Questions

1. An insurance company has the following data on its policies:

Policy limit	Losses Limited to					
	50,000	100,000	200,000	500,000	1,000,000	
50,000	2,295,020					
100,000	6,405,601	6,962,250				
200,000	9,036,806	10,339,041	10,744,125			
500,000	14,832,105	16,246,821	17,383,225	18,641,393		
1,000,000	10,390,552	11,537,920	12,346,002	13,780,532	14,016,403	

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using

(a) The direct ILF estimate.

The direct ILF estimate is $\frac{14016403}{10390552} = 1.34895653282$

(b) The incremental method.

The incremental ILF is

 $\frac{45086032}{40665064}\times\frac{40473352}{38123782}\times\frac{32421925}{29729227}\times\frac{14016403}{13780532}=1.30562820396$

2. For a certain line of insurance, the loss amount per claim follows a gamma distribution with parameters $\alpha = 0.3$ and θ . If the policy has a deductible per loss set at 0.1 θ and a policy limit set at 2.5 θ (for the current value of θ), by how much will the expected payment per loss increase if there is inflation of 7%?

The expected policy payment per loss before inflation is

$$\begin{aligned} \theta \int_{0.1}^{2.6} (x - 0.1) \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx + 2.5\theta \int_{2.6}^{\infty} \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx \\ = \theta \left(\int_{0.1}^{2.6} \frac{x^{0.3} e^{-x}}{\Gamma(0.3)} \, dx - 0.1 \int_{0.1}^{2.6} \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx \right) + 2.5\theta \int_{2.6}^{\infty} \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx \\ = \theta \left(0.3 \int_{0.1}^{2.6} \frac{x^{0.3} e^{-x}}{\Gamma(1.3)} \, dx - 0.1 \int_{0.1}^{2.6} \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx \right) + 2.5\theta \int_{2.6}^{\infty} \frac{x^{-0.7} e^{-x}}{\Gamma(0.3)} \, dx \\ = 0.2334628\theta \end{aligned}$$

After inflation of 7%, the loss amount follows a Gamma distribution with parameters $\alpha = 0.3$ and 1.07θ . The expected policy payment per loss is

$$\begin{split} 1.07\theta \int_{\frac{0.1}{1.07}}^{\frac{2.6}{1.07}} \left(x - \frac{0.1}{1.07}\right) \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx + 2.5\theta \int_{\frac{2.6}{1.07}}^{\infty} \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx \\ = & 1.07\theta \left(\int_{\frac{0.1}{1.07}}^{\frac{2.6}{1.07}} \frac{x^{0.3}e^{-x}}{\Gamma(0.3)} \, dx - \frac{0.1}{1.07} \int_{\frac{0.1}{1.07}}^{\frac{2.6}{1.07}} \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx\right) + 2.5\theta \int_{\frac{2.6}{1.07}}^{\infty} \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx \\ = & 1.07\theta \left(0.3 \int_{\frac{0.1}{1.07}}^{\frac{2.6}{1.07}} \frac{x^{0.3}e^{-x}}{\Gamma(1.3)} \, dx - \frac{0.1}{1.07} \int_{\frac{0.1}{1.07}}^{\frac{2.6}{1.07}} \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx\right) + 2.5\theta \int_{\frac{2.6}{1.07}}^{\infty} \frac{x^{-0.7}e^{-x}}{\Gamma(0.3)} \, dx \\ = & 0.2508983\theta \end{split}$$

Thus, the expected payment per loss increases by a factor $\frac{0.2508983}{0.2334628} = 1.07468213351$. This is a 7.47% increase.

3. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 100,000. It has the following data on a set of 1693 claims from policies with limit \$1,000,000.

Losses Limited to	200,000	500,000	1,000,000
Total claimed	\$93,543,632	\$112,984,361	\$126,093,821

Calculate the ILF from \$200,000 to \$1,000,000.

The pure premium for limit \$200,000 is $\frac{93543632}{1693} = 55253.1789722$. The risk charge is $\frac{55253.1789722^2}{100000} = 30529.1378653$. Thus the total premium is 55253.1789722 + 30529.1378653 = 85782.3168375. The pure premium for limit \$1,000,000 is $\frac{126093821}{1693} = 74479.5162434$. The risk charge is $\frac{74479.5162434^2}{100000} = 55471.9833985$, so the total premium is 74479.5162434 + 55471.9833985 = 129951.499642. The ILF is therefore $\frac{129951.499642}{85782.3168375} = 1.51489845965$.

Standard Questions

4. An insurer sets its premiums for an insurance contract with policy limit 500,000 or 1,000,000 as the expected payment plus a 10% loading, plus a risk charge equal to the square of the expected payment divided by 50,000. Using these premiums, the ILF from 500,000 to 1,000,000 is 1.45. A reinsurer offers reinsurance of 500,000 over 500,000 for a premium of \$143. Using this reinsurance policy, the original insurer can reduce the ILF to 1.43. What is the reinsurer's loading on this policy?

Let the expected loss limited to \$500,000 be *a* and the expected loss limited to \$1,000,000 be *b*. The insurer's premiums for insurance with limit \$500,000 and \$1,000,000 are $P = 1.1a + \frac{a^2}{50000}$ and $Q = 1.1b + \frac{b^2}{50000}$ respectively. By buying reinsurance with a premium \$143, the insurer's ILF is 1.43. Thus, we have

$$\frac{P+143}{P} = 1.43$$
$$P+143 = 1.43P$$
$$0.43P = 143$$
$$P = 332.558139535$$

Since the ILF without reinsurance is 1.45, it follows that $Q = 1.45 \times 332.558139535 = 482.209302326$. Now we solve for a and b

$$1.1a + \frac{a^2}{50000} = 332.558139535$$
$$a^2 + 55000a - 16627906.9768 = 0$$
$$a = \frac{\sqrt{55000^2 + 4 \times 16627906.9768} - 55000}{2}$$
$$= 300.6817718$$

$$1.1b + \frac{b^2}{50000} = 482.209302326$$
$$b^2 + 55000b - 24110465.1163 = 0$$
$$b = \frac{\sqrt{55000^2 + 4 \times 24110465.1163} - 55000}{2}$$
$$= 434.93270295$$

Thus, the expected payment on the reinsurance policy is b-a = 134.25093115 so the reinsurer's loading is $\frac{143}{134.25093115} - 1 = 6.52\%$.

5. An insurer sells policies with limits \$1,000,000 and \$2,000,000. The trend factor for losses limited to \$1,000,000 is 1.052. The trend factor for losses limited to \$2,000,000 is 1.044. The insurer's loading for policies with limit \$1,000,000 is 25%. For policies with limit \$2,000,000, the insurer buys reinsurance from a reinsurer. The ILF from \$1,000,000 to \$2,000,000 decreases from 1.36 in 2021 to 1.35 in 2022. What is the reinsurer's loading on this reinsurance.

Let a_{2021} and a_{2022} be the expected losses with limit \$1,000,000 in 2021 and 2022 respectively. Let b_{2021} and b_{2022} be the expected losses with limit \$2,000,000 in 2021 and 2022 respectively. In 2021 the premium for a policy with limit \$1,000,000 is $1.25a_{2021}$. Thus, the premium for a policy with limit \$2,000,000 is $1.36 \times 1.25a_{2021} = 1.7a_{2021}$. Hence the premium for the reinsurance is $(1.7 - 1.25)a_{2021} = 0.45a_{2021}$. If the loading is l, then we have $(1 + l)(b_{2021} - a_{2021}) = 0.45a_{2021}$.

Similarly, the premium for reinsurance in 2022 is $(1.35 \times 1.25 - 1.25)a_{2022} = 0.4375a_{2022}$. From the trend factor, we have $a_{2022} = 1.052a_{2021}$, so the premium in 2022 is $0.4375 \times 1.052a_{2021} = 0.46025a_{2021}$. Thus $(1+l)(b_{2022} - 1.052a_{2021}) = 0.46025a_{2021}$. Substituting $b_{2022} = 1.044b_{2021}$ gives

$$(1+l)(1.044b_{2021} - 1.052a_{2021}) = 0.46025a_{2021}$$

Subtracting $1.044(1+l)(b_{2021}-a_{2021}) = 1.044 \times 0.45a_{2021}$ from both sides gives

 $(1+l)(-0.008a_{2021}) = (0.46025 - 1.044 \times 0.45)a_{2021} = -0.00955a_{2021}$ $1+l = \frac{0.00955}{0.008} = 1.19375$

so the loading is 19.38%.