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The Transformed Beta Family (Revision)

Transformed Beta Distribution
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The Transformed Gamma and Inverse Transformed
Gamma Families (Revision)

Transformed Gamma Inverse Transformed Gamma
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Methods to Create New Distributions

Transformation
Adding a constant
Multiplication by a constant
Raising to a power
Exponentiation

Combining Distributions
Convolution
Mixing
Splicing
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5.2 Creating New Distributions— Transformations
Scale and Location Transformations

Many distributions include scale and location parameters.
Location parameters inappropriate for non-negative distributions.
Scale can represent change of unit or inflation.
Sometimes need to standardise variables for asymptotic results.
F ∗(x) = F

(x−µ
σ

)
f ∗(x) = 1

σ f
( x−µ

σ

)
Raising to a Power

Can make values positive — e.g. Chi-square test.
Can reduce skewness — e.g. Box-Cox transformation.
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Exponentiation

Converts sums into products.
F ∗(x) = F (log(x)) f ∗(x) = 1

x f (log(x))
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5.2 Creating New Distributions

Question 1

Let X follow a beta distribution. Calculate the density function of a
standardised version of X .
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5.2 Creating New Distributions

Question 2

Calculate the pdf of the square of a standardised gamma function.
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5.2 Creating New Distributions

Question 3

Every day, the value of a particular investment increases by X% where
X has mean 0.04 and variance 5. What is the distribution of the value
after 1 year?
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5.2 Creating New Distributions— Combining
Convolution

Often deal with sums of independent random variables.
Sometimes from the same distribution — e.g. normal, gamma.

fX+Y (x) =

∫
fX (y)fY (x − y) dy

Mixing
Marginal distribution with unobserved covariate.

f (x) =

∫
fθ(x)π(θ) dθ

Splicing
Mixture with disjoint supports.
Used to allow different distributions for tail and main part of data.

f (x) =

{
f1(x) x < C
f2(x) x > C
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5.2 Creating New Distributions

Question 4

An insurer sells two policies. Aggregate losses from each policy are
assumed to follow a Pareto distribution with α = 4 and θ = $10,000.
What is the probability that aggregate losses from both policies exceed
$50,000?
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5.2 Creating New Distributions

Question 5

The aggregate losses on an auto insurance policy follow a Pareto
distribution with α = 2.5, and θ varying between policyholders. For a
randomly chosen policyholder, Θ follows a gamma distribution with
α = 4 and θ = 800.

(a) What is the probability that the aggregate losses on a random
policy exceed $10,000?

(b) What is the expected aggregate loss for a random individual?
(c) What are the VaR and TVaR for the aggregate loss of a random

policy at the 0.99 level?
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5.2 Creating New Distributions

Question 6

An actuary is modelling aggregate claims. For aggregate claims less
than $10,000 a normal distribution with mean $4,000 and standard
deviation $3,000 can be used, because of the central limit theorem.
For larger aggregate claims, the actuary decides that aggregate claims
larger than $10,000 should be modelled as following a Pareto
distribution with α = 3. The probability that aggregate claims exceed
$10,000 is estimated to be 0.08, and the parameter θ for the Pareto
distribution is chosen so that the density function of the resulting
distribution is continuous. What is the probability under this model that
aggregate claims exceed $25,000?
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8.2 Deductibles

Deductibles (Revision)
If a policy has a deductible d , then the amount paid for a loss X is
(X − d)+.

Dealing with Deductibles (Revision)
Deductibles reduce claim frequency.
For severity distribution, we sometimes consider per loss, and
sometimes per claim.
Deductibles always reduce per loss severity, but might increase or
decrease per claim severity.
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8.3 Loss Elimination Ratio and the Effect of Inflation

Loss Elimination Ratio (Revision)
The Loss Elimination Ratio is the ratio
Losses paid by policyholder due to deductible

Total losses = 1− Losses paid by insurer
Total losses

September 2, 2023 14 / 158



8.4 Policy Limits

Policy Limits (Revision)
If a policy has a limit u, then the amount paid for a loss X is X ∧ u.

Dealing with Limits (Revision)
Deductibles are like limits from the point of view of the
policyholder — with a deductible d , the policyholder pays X ∧ d
and the insurer pays (X − d)+ With a limit u, the insurer pays
X ∧ u and the policyholder pays (X − u)+.
Limits decrease the effect of inflation.
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IRLRPCI 5.2 Increased limits factors

Increased limits factors
Relative increase in premium caused by increasing policy limit.
Several difficulties in estimating ILF:

Loss development factors increase with policy limit.
Trend factors tend to increase with policy limit.
Risk to insurer increases faster than expected claim.
Some expenses are fixed; some vary with premium; some vary with
policy size.

Historical policy limits affect the data in several ways:
Insurance company records generally censor data at policy limits.
Limit can impact settlement amounts — e.g. lawyers might aim for
policy limit.
Adverse selection

These data issues can be mitigated by only considering policies
with limits at least as high as the limit under consideration,
provided there is sufficient data.
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IRLRPCI 5.2 Increased limits factors

Question 7

An insurance company has the following data on its policies:
Policy limit Losses Limited to

50,000 100,000 500,000 1,000,000
50,000 10,000

100,000 34,000 41,000
500,000 23,000 26,000 31,000

1,000,000 11,000 12,300 13,400 17,000
Use this data to calculate the ILFs.
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IRLRPCI 5.2 Increased limits factors

Loss Development
Loss development factors tend to be larger for larger claims.
They should be estimated from datasets with a single limit.

Trend Factors
Lower policy limits reduce the effects of inflation.
Different trend factors should be calculated for each policy limit.
For higher policy limits, the larger variance and smaller data set
can mean estimates are not credible, so data from other policy
limits may need to be used.

Risk
Higher policy limits increase risk more than premium.
Typically risk load should be increased to compensate for this
increased risk.
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IRLRPCI 5.2 Increased limits factors

Question 8

For a certain line of insurance, the loss amount per claim follows an
exponential distribution with mean aθ, where a is the exposure. The
policy has a limit l , which is currently set at 5θ per unit of exposure.
Losses increase by an inflation rate of 10%. Calculate the percentage
increase in expected total payments per claim.
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IRLRPCI 5.2 Increased limits factors

Question 9

An insurance company models the number of claims on its policies as
following a Poisson distribution with parameter λ = 100. Losses follow
a Pareto distribution with α = 3 and θ = 10,000. The policies have a
policy limit per claim of $50,000. The insurer models aggregate losses
as following a normal distribution, and sets its total premiums at the
95th percentile of the agregate loss distribution.
(a) Calculate the current risk loading as a percentage of the gross rate.
(b) Calculate risk loading as a percentage of the gross rate if the
company increases the policy limit to $100,000 per claim.
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IRLRPCI 5.2 Increased limits factors

Question 10

An insurance company charges a risk charge equal to the square of
the average loss amount, divided by 50,000. It has the following data
on a set of claims from policies with limit $1,000,000.
Interval No. of claims Total claimed
(0,10,000] 2,300 6,850,000
(10,000,100,000] 900 13,600,000
(100,000,500,000] 140 19,400,000
(500,000,1,000,000] 25 18,600,000

Calculate the ILF from $100,000 to $500,000, and to $1,000,000.
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IRLRPCI 5.2 Increased limits factors

Expenses
Expenses tend to be subdivided into fixed costs and costs that
vary.
Some expenses are proportional to premium, other variable
expenses will increase non-linearly with premium, e.g. adjustment
expenses.

Loss Distributions
Parametric loss distributions make calculating ILFs easier.
To fit parametric distributions case reserves should be used for
open claims, because time to settlement is not independent of
loss size.
Case reserves from very recent claims can be subjective, so it is
often a good idea to ignore data from most recent years.
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IRLRPCI 5.2 Increased limits factors

Question 11

An insurer finds that the pure premium ILF from $1,000 to $1,000,000
is 4.62. What is the Loss elimination ratio of a $1,000 deductible for a
policy with limit $1,000,000?
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IRLRPCI 5.2 Increased limits factors

Question 12

An insurer sells policies with limits $1,000,000 and $2,000,000. The
trend factor for losses limited to $1,000,000 is 1.052. The trend factor
for losses limited to $2,000,000 is 1.044. The insurer’s loading for
policies with limit $1,000,000 is 25%. For policies with limit
$2,000,000, the insurer buys reinsurance from a reinsurer. The ILF
from $1,000,000 to $2,000,000 decreases from 1.36 in 2021 to 1.35 in
2022. What is the reinsurer’s loading on this reinsurance.
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Study Note 2 Extreme Value Theory
Problem
Given a sample

x1, . . . , xN

How do we model the largest losses, from very few samples?

Block Maxima
1 Divide the sample into N

n blocks of size n. (By time or at random).
2 Let mn,i be the maximum of block i of size n. We therefore have

the sample of block maxima:
mn,1, . . . ,mn, N

m

Points over Threshold
1 Choose a threshold T — usually a high empirical quantile.
2 Restrict to the sample points

{xi |xi > T}
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SN2 5.3 Distribution of Block Maxima

Question 13

(a) Simulate a large sample from a standard normal distribution.
Divide this sample into blocks of size n, for varying values of n,
and calculate the block maxima.

(b) Fit scale and location functions to the distributions of block
maxima.

(c) Use the fitted function to rescale the distributions of the block
maxima, and compare the rescaled distributions.
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SN2 5.3 Distribution of Block Maxima

Question 14

Repeat Question 13 for an exponential distribution.
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Generalised Extreme Value Distribution

Theorem (Fisher-Tippet-Gnedenko Theorem)
If Mn is the maximum of a sample of n i.i.d. random variables with
distribution function F , and there are functions cn and dn of n such that
the distributions of Mn−dn

cn
converge in distribution to a non-degenerate

distribution, then for a certain choice of cn and dn, that distribution has
CDF of the form

Hξ(x) =

{
e−(1+ξx)

− 1
ξ if ξ 6= 0

e−e−x
if ξ = 0

Extreme Value Distributions

ξ > 0 Fréchet distribution F (x) = exp
(
−
(x−µ

θ

)−α)
ξ = 0 Gumbel distribution F (x) = exp

(
− exp

(
−x−µ

θ

))
ξ < 0 Weibull EV distribution F (x) = exp

(
−
(µ−x

θ

)τ)
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Generalised Extreme Value Distribution

Question 15

when Xi follow a log-normal distribution with parameters µ and σ2, the

values of dn are given as the solutions to log(dn)d
log(dn)

2
n = n, and

cn = 1
log(dn) . Find the corresponding value of ξ.
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Generalised Extreme Value Distribution

Theorem
Let X have survival function S(x). Its distribution function F is in the
Maximum Domain of Attraction of Hξ if and only if
limn→∞ nS(cnx + dn) = − log Hξ(x).

September 2, 2023 30 / 158



Generalised Extreme Value Distribution

Question 16

(a) What are the appropriate values of cn and dn for a Weibull
distribution, and what is the corresponding value of ξ?

(b) For a Weibull distribution with τ = 0.6 and θ = 10, for n = 100 and
n = 1000, what is the probability that Mn > 100 using the GEV
approximation? What is the exact probability?
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Generalised Extreme Value Distribution

Question 17

A reinsurance company estimates that the annual aggregate losses in
millions on a certain portfolio is in the MDA of a GEV distribution with
ξ = 2 and the normalising constants are cn = (2 + n)

1
3 and

dn = (4 + n)
2
5 . The reinsurer is selling stop-loss reinsurance on this

portfolio with attachment point $20,000,000. What is the probability
that it will need to pay a claim in the next 100 years?
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SN2 5.3.3 GEV distributions

Fréchet Distribution (ξ > 0)

F (X ) = exp

(
−
(

x − µ
θ

)− 1
ξ

)
Bounded below by µ− θ

ξ .
Fat-tailed.
α = 1

ξ called the tail-index of the distribution.
Larger ξ (or smaller α) correspond to fatter tails.
For any distribution in the MDA of the Fréchet distribution, only
moments that are < α are finite. Thus any distribution with all
moments is not in the MDA of the Fréchet distribution.
Pareto, t and Burr distributions in Fréchet MDA.
Distribution with survival function S(x) in Fréchet MDA if and only
S(x) = x−

1
ξ L(x), where for any t > 0, limx→∞

L(tx)
L(x) = 1.
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SN2 5.3.3 GEV distributions

Gumbel Distribution (ξ = 0)

F (X ) = exp

(
− exp

(
−
(

x − µ
θ

)))
Unbounded.
Fat-tailed.
For any distribution in the MDA of the Gumbel distribution, all finite
moments exist.
Gumbel MDA contains a range of distributions including
light-tailed such as normal and exponential, and heavier tailed
such as gamma and log-normal. Some of these distributions are
bounded below.
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SN2 5.3.3 GEV distributions

Weibull EV Distribution (ξ < 0)

F (X ) = exp

(
− exp

(
−
(

x − µ
θ

)))
Bounded above by x < µ− 1

ξ .
If Y follows a Weibull EV distribution, then 1 + ξY follows a
Weibull distribution.
Beta and Uniform distributions in Weibull EV MDA.
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SN2 5.3.4 Estimating the GEV parameter

Estimating ξ
cn and dn unknown & hard to estimate, but without normalisation,
Mn follows a scaled translated GEV distribution.
Estimate parameters from block maxima by maximum likelihood.
Estimation of ξ should be consistent for different choices of n.
For small n, GEV asymptotics may not apply. For large n, the
resulting sample size may be too small.
GEV density

hξ,θ,µ(x) =
1
θ

(
1 + ξ

(
x − µ
θ

))−(1+ 1
ξ

)
exp

(
−
(

1 + ξ

(
x − µ
θ

))− 1
ξ

)
Log-likelihood l(ξ, µ, θ):

−k log(θ)−
(

1 +
1
ξ

) k∑
i=1

log

(
1 + ξ

(
mj − µ
θ

))
−

k∑
i=1

(
1 + ξ

(
mj − µ
θ

))− 1
ξ
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SN2 5.3.4 Estimating the GEV parameter

Question 18

(a) Simulate a sample of 1,000,000 normal random variables. Use
the fit.GEV function from the R package QRM to estimate the
parameters for a range of different block sizes n.

(b) Repeat this 100 times for each block size to find the distribution of
the estimated parameter values.
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SN2 5.4 Points over Threshold

Introduction
Model distribution of excess losses Yd = X − d |X > d .

Surival function given by Sd (y) = SX (y+d)
SX (d) .

PDF (or PMF) given by fd (y) = fX (y+d)
SX (d) .

Mean excess loss e(d) = E(X − d |X > d) = E(X)−E(X∧d)
SX (d)
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SN2 5.4.2 Generalised Pareto Distribution

Survival Function

S(x) =


(

1 + ξ x
β

)− 1
ξ

ξ 6= 0

e−
x
β ξ = 0

Where β > 0, 0 6 x and x 6 −β
ξ for ξ < 0.

Notes
For ξ > 0, this is a Pareto distribution with α = 1

ξ and θ = β
ξ .

For ξ = 0, this is an exponential distribution.
For ξ < 0, this is a scaled beta distribution.
For ξ > 0, k th moment exists only for k < 1

ξ .
Gξ,1(x) = 1 + log Hξ(x) where Hξ is the CDF of the GEV.
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SN2 5.4.2 Generalised Pareto Distribution

Question 19

Show that the mean excess loss function of a GPD distribution is a
straight line whenever it is defined.
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SN2 5.4.2 Generalised Pareto Distribution

Theorem (Pickands-Balkema-De Haan Theorem)
Let F denote the cdf of a random variable X with upper bound
xsup 6∞. We have F ∈ MDA(Hξ) if and only if there is some function
βd > 0 such that:

lim
d→xsup

sup
d6x6xsup

∣∣Fd (x)−Gξ,βd (x)
∣∣ = 0

Notes
This means we can approximate the excess loss distribution by a
GPD, for sufficiently large losses.
For GPD, MEL is a linear function, so one approach to decide
whether GPD approximation is appropriate is to estimate MEL
function, and decide when it becomes linear.
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SN2 5.4.2 Generalised Pareto Distribution

Question 20

(a) Simulate 100,000 values from an inverse gamma distribution with
α = 4. Calculate the empirical MEL as a function of threshold.

(b) Plot the empirical MEL on a graph, and see where the linear
approximation becomes reasonable.

(c) Use this to estimate the probability that a random loss exceeds
the threshold by at least 1, and compare this to the true value.
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SN2 5.4.2 Generalised Pareto Distribution

Question 21

Are there any distributions with linear MEL function, except for the
GPD?
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SN2 5.4.2 Generalised Pareto Distribution

Question 22

An insurance company estimates that the 95th percentile of a loss
distribution is $4,200 and that above this point, the GPD approximation
applies. The company estimates that the GPD parameters are ξ = 0.4
and β = 300 for this d . Estimate the VaR and TVaR for this loss
distribution at the 0.99 level.
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SN2 5.4.4 The Hill Estimator

Question 23

Show that if F with positive support is in the MDA of a Fréchet
distribution, with parameter ξ, then the mean excess loss of log(X )
converges to ξ.
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SN2 5.4.4 The Hill Estimator

Hill Estimator
Let x(1) 6 x(2) 6 . . . 6 x(n) be the order statistics of a sample.
The Hill estimator is

α̂H
j =

 n∑
k=j+1

log(x(k))

n − j + 1
− log(x(j))

−1

ŜH(x) =
j
n

(
x

x(n−j)

)−α̂H
j

Notes
Get different estimates for different values of j .
For small j , GPD approximation may be poor.
For large j sample size may be too small.
Plot values of α̂H

j for a range of j .
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SN2 5.4.4 The Hill Estimator

Question 24

Simulate 100,000 data points from an inverse Weibull distribution with
τ = 8.7 and θ = 200. Plot the Hill estimator against j . Compare the Hill
estimator with the MLE estimator of α based on different cut-offs. (You
can use the fit.GPD function from the R package QRM for this.)

September 2, 2023 47 / 158



7.3 Mixed Frequency Distributions

Question 25

Calculate the probability function of a mixed Poisson distribution with
mixing distribution a Gamma distribution with shape α and scale θ.
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7.1 Compound Frequency Distributions
Probability Generating Functions (Revision)

For a random variable X , the p.g.f. is given by P(z) = E(zX ).
For independant X and Y , PX+Y (z) = PX (z)PY (z).
Related to m.g.f. by PX (z) = MX (log(z)).
Distribution PX (z)

Binomial (1− p(1− z))n

Poisson e−λ(1−z)

Negative Binomial (1 + β(1− z))−r

Compound Distributions
Primary distribution N has p.g.f. P(z). Secondary distribution X
has p.g.f. Q(z).
Compound distribution has p.g.f. P(Q(z)).
This is the distribution of X1 + . . .+ XN , where Xi are i.i.d. and
independent of N.
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7.1 Compound Frequency Distributions

Question 26

Consider a compound distribution where the primary distribution is a
member of the (a,b,0) distribution. Find a recurrence relation between
the probabilities of the compound distribution.
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7.1 Compound Frequency Distributions

Question 27

Calculate the probabilities of each of the values 0, 1, and 2 of a
compound Poisson-Poisson distribution with parameters λ1 and λ2.
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7.1 Compound Frequency Distributions

Question 28

Show that the binomial-geometric and negative binomial-geometric
with r a positive integer, give the same distribution.
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7.1 Compound Frequency Distributions

Question 29

Show that a compound Poisson-logarithmic distribution gives the same
distribution as the negative binomial distribution.
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7.2 Compound Poisson Distributions

Question 30

Show that a sum of independant compound Poisson random variables
is another compound Poisson random variable.
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7.2 Compound Poisson Distributions

Question 31

(a) Calculate the skewness of a compound Poisson distribution in
terms of the first three moments of the secondary distribution.
(b) Use this to calculate the skewness of the Poisson-ETNB
distribution.
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Characteristic Functions and Infinite Divisibility

Definition
For a random variable X , the characteristic function φX is given by

φX (z) = E(eizx ) = E(cos(zX ) + i sin(zX ))

This is similar to the moment generating function, but it exists for all
distributions.

Definition
A distribution with characteristic function φ(z) is infinitely divisible if for
any positive integer n, there is another distribution with characteristic
function φn(z) such that (φn(z))n = φ(z).

This is equivalent to the same statement for the probability generating
function or the moment generating function if they exist.
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7.2 Compound Poisson Distributions

Question 32

Which of the following distributions are infinitely divisible?
a) gamma
b) inverse gamma
c) inverse Gaussian
d) binomial
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9.3 The Compound Model for Aggregate Claims

Revision
The number of losses N is a discrete random variable.
Each loss amount Xi is assumed i.i.d. and independent of N.
The aggregate loss is S = X1 + · · ·+ XN .
To get the aggregate loss from first principles, we can use

fS(x) =
∞∑

n=0

P(N = n)fS|N(x |N = n)

In practice, computation prohibits this approach.
In a very small number of cases, the distribution can be simplified
to a finite mixture.
When the primary distribution is from the (a,b,1) class and the
secondary distribution is arithmetic, there is a recurrence formula
(see Question 26) for the compound distribution.
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9.3 The Compound Model for Aggregate Claims

Question 33

An individual loss distribution is normal with mean 100 and standard
deviation 35. The total number of losses N has the following
distribution:

n P(N = n)

0 0.4
1 0.3
2 0.2
3 0.1

What is the probability that the aggregate losses exceed 130?
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9.4 Analytic Results

Question 34

Calculate the probability density function of the aggregate loss
distribution if claim frequency follows a negative binomial distribution
with r = 2 and severity follows an exponential distribution.
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9.4 Analytic Results

Question 35

An insurance company models the number of claims it receives as a
negative binomial distribution with parameters r = 15 and β = 2.4. The
severity of each claim follows an exponential distribution with mean
$3,000. What is the net-premium for stop-loss insurance with an
attachment point of $204,000?
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9.5 Computing the Aggregate Claims Distribution

Question 36

Suppose that the total number of claims follows a negative binomial
distribution with r = 2 and β = 3. Suppose that the severity of each
claim (in thousands of dollars) follows a zero-truncated ETNB
distribution with r = −0.6 and β = 7. What is the probability that the
aggregate loss is at most 3? Calculate this from first principles.
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The Recursive Method

Theorem
Suppose the severity distribution is a discrete distribution with
probability function fX (x) for x = 0,1, . . . ,m (m could be infinite) and
the frequency distribution is a member of the (a,b,1) class with
probabilities pk , k = 0,1,2, . . . satisfying pk =

(
a + b

k

)
pk−1 for all

k > 2.
Then the aggregate loss distribution is given by

fS(x) =
(p1 − (a + b)p0)fX (x) +

∑x∧m
y=1

(
a + by

x

)
fX (y)fS(x − y)

1− afX (0)

September 2, 2023 63 / 158



9.6 The Recursive Method

Question 37

Let the number of claims follow a Poisson distibution with λ = 2.4 and
the severity of each claim follow a negative binomial distribution with
r = 10 and β = 2.3. What is the probability that the aggregate loss is
at most 3?
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9.6 The Recursive Method

Question 38

An insurance company offers car insurance. The number of losses a
driver experiences in a year follows a negative binomial random
variable with r = 0.2 and β = 0.6. The size of each loss (in hundreds
of dollars) is modelled as following a zero-truncated ETNB distribution
with r = −0.6 and β = 3. The policy has a deductible of $1,000 per
loss. What is the probability that the company has to pay out at least
$400 in a single year to a driver under such a policy?
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9.6 The Recursive Method

Question 39

The number of claims an insurance company receives is modelled as
a compound Poisson distribution with parameter λ = 6 for the primary
distribution and λ = 0.1 for the secondary distribution. Claim severity
(in thousands of dollars) is modelled as following a zero-truncated
logarithmic distribution with parameter β = 4. What is the probability
that the total amount claimed is more than $3,000.
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6.4.3 Computation Issues
How Computers Think of Numbers

0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1

sign (positive)

Mantissa — 1.01101001001110100 (binary) = 46237

32768

Exponent — X2 -19

Problems That can Arise
There is a smallest representable positive number. This is very
small, but for an aggregate of a large number of losses, the
probability of zero can be smaller than this value, leading to
underflow.
Numbers are rounded to the limited accuracy. If we subtract a
number from a very close number, most of the accuracy may be
lost.
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6.4.3 Computation Issues— Dealing with Underflow
Starting Above 0

Approximate fS(x) = 0 for x < k .
As we don’t know fS(k), start with fS(k) = 1, and rescale later.
Use the recurrence to compute fs(x) for k < x < u.
Rescale so that

∑u
x=k fs(x) = 1.

Common practice: let k ,u = µ± 6σ so P(X ∈ [k ,u]) ≈ 1.

Convolution
Primary distribution is divisible (∞ly if Poisson or n.b.).
This means we can subdivide N = N1 + · · ·+ Nk .

S = X1 + · · ·+ XN

= X1 + · · ·+ XN1︸ ︷︷ ︸+ XN1+1 + · · ·+ XN1+N2︸ ︷︷ ︸+ · · ·+ XN−Nk +1 + · · ·+ XN︸ ︷︷ ︸
= S1 + · · ·+ Sk

Each Si compound so computed using the recurrence.
Compute S from Si by repeated convolution. (Easiest if k = 2m).
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6.4.3 Computation Issues

Question 40

The number of claims an insurance company receives is modelled as
a Poisson distribution with parameter λ = 96. The size of each claim is
modelled as a zero-truncated negative binomial distribution with r = 4
and β = 2.2. Calculate the approximated distribution of the aggregate
claims:
(a) By starting the recursion at a value of k six standard deviations
below the mean.
(b) By solving for a rescaled Poisson distribution with λ = 12 and
convolving the solution up to 96.
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Answer to Question 40

R-Code for (a)

ans<-1
ans<-as.vector(ans)
for(n in 2:2000){
temp<-0
for(i in 1:(n-1)){%

temp<-temp+16*i*(i+1)*(i+2)*(i+3)/(n+240)*0.6875^i*
0.3125^4*ans[n-i]/(1-0.3125^4)

}
ans<-c(ans,temp)

}
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Answer to Question 40

R-Code for (b)

ConvolveSelf<-function(n){
convolution<-vector("numeric",2*length(n))
for(i in 1:(length(n))){

convolution[i]<-sum(n[1:i]*n[i:1])
}
for(i in 1:(length(n))){

convolution[2*length(n)+1-i]<-sum(n[length(n)+1-(1:i)
]*n[length(n)+1-(i:1)])

}
return(convolution)

}

d24<-ConvolveSelf(ans2)
d48<-ConvolveSelf(d24)
d96<-ConvolveSelf(d48)
plot(dist1,d96[241:2240])

September 2, 2023 71 / 158



Numerical Stability

Question 41

If the primary distribution is binomial with n = 7 and p = 0.8, and the
secondary distribution has probability mass function

fX (x) =


0.21 if x = 0
0.41 if x = 1
0 if x = 2
0.38 if x = 3

use the recurrence relation to compute the aggregate loss distribution.
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Constructing Arithmetic Distributions

Method of Rounding

fX a(x) = P(x − 0.5 6 X < x + 0.5)

Method of Local Moment Matching
Divide N into intervals of length k : [0, k ], [k ,2k ], . . ..
For each interval I = [nk , (n + 1)k ], calculate P(X ∈ I) and
E(X i |X ∈ I) for i = 1, . . . , k .
Construct values qnk ,qnk+1, . . .q(n+1)k such that∑(n+1)k

m=nk qmmi∑(n+1)k
m=nk qm

= E(X i |X ∈ I) for i = 1, . . . , k .

For m 6= nk , there is a unique interval with a value of qm. Let
fX (m) be this value. If m = nk , then we have one value of qnk from
the interval [(n − 1)k ,nk ], and one from the interval [nk , (n + 1)k ].
Let fx (nk) be the sum of these values.
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Constructing Arithmetic Distributions

Question 42

Let X follow an exponential distribution with mean θ. Approximate this
with an arithmetic distribution (h = 1) using:
(a) The method of rounding.
(b) The method of local moment matching, matching 2 moments on
each interval.
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16 Model Selection

Why is Model Selection Important?
Using a wrong model will lead to wrong conclusions.

Advantages of Graphical Approaches
Looking at graphs tells us not only whether the model fit is good,
but also where the model fit is good or bad.
Many tests only detect particular deviations from the model, and
miss other deviations.
Your eyes have fewer bugs than your R code.

Advantages of Testing or Score-based Approaches
It is hard to judge how much deviation from the expected
distribution should occur by chance.
Formal tests or scores are harder to manipulate, and easier to
defend to regulators.
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 43

An insurance company is modeling claim severity. It collects the
following data points:

325 692 1340 1784 1920 2503 3238 4054 5862
6304 6926 8210 9176 9984

By graphically comparing distribution functions, assess the
appropriateness of a Pareto distribution for modeling this data. The
MLE estimates for the parameters of the Pareto distribution are
α = 934.25, θ = 4156615
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16.3 Graphical Comparison of Density and Distribution
Functions

Answer to Question 43
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 44

For the data from Question 43:

325 692 1340 1784 1920 2503 3238 4054 5862
6304 6926 8210 9176 9984

Graphically compare density functions to assess the appropriateness
of a Pareto distribution for modeling this data.
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16.3 Graphical Comparison of Density and Distribution
Functions

Answer to Question 44
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 45

For the data from Question 43:

325 692 1340 1784 1920 2503 3238 4054 5862
6304 6926 8210 9176 9984

By Graphing the differnce D(x) = F ∗(x)− Fn(x), assess the
appropriateness of a Pareto distribution for modeling this data.
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16.3 Graphical Comparison of Density and Distribution
Functions

Answer to Question 45

0 2000 4000 6000 8000 10000

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10

x

D(
x)

September 2, 2023 81 / 158



16.3 Graphical Comparison of Density and Distribution
Functions

Question 46

For the data from Question 43:

325 692 1340 1784 1920 2503 3238 4054 5862
6304 6926 8210 9176 9984

Use a p-p plot to assess the appropriateness of a Pareto distribution
for modeling this data.
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16.3 Graphical Comparison of Density and Distribution
Functions

Answer to Question 46
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 47

An insurance company is modelling a data set. It is considering 3
models, each with 1 parameter to be estimated. On the following slides
are various diagnostic plots of the fit of each model.
Determine which model they should use for the data in the following
situations. Justify your answers.
(a) Which model should they choose if accurately estimating
(right-hand) tail probabilities is most important?
(b) The company is considering imposing a deductible, and therefore
wants to model the distribution very accurately on small values of x .
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 48

For each of the models on the following three slides, determine which
of the statements below best describes the fit between the model and
the data:

i The model distribution assigns too much probability to high values
and too little probability to low values.

ii The model distribution assigns too much probability to low values
and too little probability to high values.

iii The model distribution assigns too much probability to tail values
and too little probability to central values.

iv The model distribution assigns too much probability to central
values and too little probability to tail values.
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Model I
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Model II
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Model III
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 49

An insurance company wants to know whether an exponential
distribution is a good fit for a sample of 40 claim severities. It estimates
θ = 5.609949, and draws the following p-p plot:
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How many of the samples they collected were more than 10?
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 50

An insurance company wants to know whether an exponential
distribution is a good fit for a sample of 40 claim severities. It estimates
θ = 5.609949, and draws the following p-p plot:
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How many of the samples they collected were less than 3?
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16.3 Graphical Comparison of Density and Distribution
Functions

Question 51

An insurance company wants to know whether a Pareto distribution
with θ = 15 is a good fit for a sample of 30 claim severities. It
estimates α = 0.8725098 and draws the following plot of D(x):
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How many of the samples they collected were less than 10?
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16.4 Hypothesis Tests

Hypothesis Tests
We test the following hypotheses:
H0: The data came from a population with the given model.
H1: The data did not come from a population with the given model.
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16.4 Hypothesis Tests

Kolmogorov-Smirnov test

D = max
t6x6u

|Fn(x)− F (x)|

Anderson-Darling test

A2 = n
∫ u

t

(Fn(x)− F (x))2

F (x)(1− F (x))
f (x) dx

Chi-square Goodness-of-fit test
Divide the range into separate regions, t = c0 < c1 < · · · < cn = u.
Let Oi be the number of samples in the interval [ci−1, ci).
Let Ei be the expected number of sample in the interval [ci−1, ci).

X 2 =
n∑

i=1

(Oi − Ei)
2

Ei
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16.4 Hypothesis Tests

Question 52

For the data from Question 43:

325 692 1340 1784 1920 2503 3238 4054 5862
6304 6926 8210 9176 9984

Test the goodness of fit of the model using:
(a) The Kolmogorov-Smirnov test.
(b) The Anderson-Darling test.
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16.4 Hypothesis Tests

Answer to Question 52
(b)

A2 =− nF ∗(u) +
k∑

j=0

(1− Fn(yj))2(log(1− F ∗(yj))− log(1− F ∗(yj+1))

+ n
k∑

j=1

Fn(yj)
2(log(F ∗(yj+1))− log(F ∗(yj+1)))

x Fn(x) F ∗(x) term x Fn(x) F ∗(x) term
325 0.0714 0.0704 0.0748 4054 0.5714 0.5978 0.1407
692 0.1429 0.1440 0.1190 5862 0.6429 0.7320 0.0267

1340 0.2143 0.2600 0.0726 6304 0.7143 0.7573 0.0323
1784 0.2857 0.3303 0.0204 6926 0.7857 0.7889 0.0532
1920 0.3571 0.3504 0.0803 8210 0.8571 0.8417 0.0309
2503 0.4286 0.4302 0.0876 9176 0.9286 0.8726 0.0215
3238 0.5000 0.5169 0.0822 9984 1.0000 0.8937 0.1124
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16.4 Hypothesis Tests

Question 53

Recall Question 47, where a company was deciding between three
models. The D(x) plots are below:

0 1000 2000 3000 4000

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

0.
08

x

D
(x

)

0 1000 2000 3000 4000

−
0.

2
−

0.
1

0.
0

0.
1

x

D
(x

)

0 1000 2000 3000 4000

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

x

D
(x

)

If the company uses the Kolmogorov-Smirnov statistic to decide the
best model, which will it choose?
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16.4 Hypothesis Tests

Question 54

An insurance company records the following claim data:
Claim Amount Frequency

0–5,000 742
5,000–10,000 1304

10,000–15,000 1022
15,000–20,000 830
20,000–25,000 211
More than 25,000 143

Use a Chi-square test to determine whether Claim size follows an
exponential distribution. The best mean for the exponential distribution
is θ = 9543.586.
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16.4 Hypothesis Tests

Likelihood Ratio test
The Likelihood ratio test compares two nested models —M0 andM1.

Hypotheses
H0: The simpler model describes the data as well as the more

complicated model.
H1: The more complicated model describes the data better

than the simpler model.

We compute the parameters from both models by maximum likelihood.
The test statistic is.

2(lM1(x ; θ1)− lM0(x ; θ0))

Under H0, for large n, this follows a Chi-square distribution with
degrees of freedom equal to the difference in number of parameters.
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16.4 Hypothesis Tests

Question 55

An insurance company observes the following sample of claim data:

382 596 920 1241 1358 1822 2010 2417 2773
3002 3631 4120 4692 5123

Use a likelihood ratio test to determine whether an exponential or a
Weibull distribution fits this data better.
The maximum likelihood estimates for the Weibull distribution are
τ = 1.695356 and θ = 2729.417.
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Study note: Information Criteria

Basic Idea
For natural measures of fit (log-likelihood, KS test statistic, AD test
statistic, etc.) more complicated models produce better fit.
This is (at least partly) because they are fitting noise in the data.
We can compensate for this by adding a penalty term to penalise
model complexity.

Two Common Approaches
Akaike Information Criterion (AIC): l(θ; x)− p
Schwarz Bayesian Criterion(SBC)/Bayesian Information Criterion
(BIC): l(θ; x)− p

2 log(n)

where p is the number of estimated parameters, and n is the sample
size.
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Study note: Information Criteria

Question 56

Recall Question 55, where we had a sample

382 596 920 1241 1358 1822 2010 2417 2773
3002 3631 4120 4692 5123

for which the Weibull distribution has a log-likelihood of −120.7921.
Use AIC and BIC to determine whether an inverse exponential
distribution is a better fit for the data.
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16.5 Selecting a Model

Comments on Model Selection
Try to pick a model with as few parameters as possible.
(Parsimony)
Choice of model depends on the aspects that are important. Even
if a formal test is used, the choice of which test depends on the
aspects that are important.
Aim is generalisability. The model should apply to future data.
(Models which fit the given data well, but not new data are said to
overfit.)
Trying large numbers of models will lead to one which fits well just
by chance.
Experience is a valuable factor in deciding on a model.
Sometimes knowledge of the underlying process may lead to a
particular model (e.g. binomial).
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Credibility Theory (Revision)

Problem
Policyholders are all different, so average rates from large
populations will be wrong for individual policyholders.
Not enough data to estimate a reliable rate for individual
policyholder or group.

Limited Fluctuation Credibility
Determine how much experience is needed to reliably estimate a
premium for an individual policyholder or group.
For groups with less experience, take a weighted average
ZX + (1− Z )µ, where Z =

√
n
n0

is the group’s credibility.

Problems with Limited Fluctuation Credibility
No theoretical justifiction.
Parameters r and p chosen arbitrarily.
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18 Greatest Accuracy Credibility

Assumptions
Each policyholder has a risk parameter Θ, which is a random
variable, but is assumed constant for that particular policyholder.
Individual values of Θ can never be observed.
The distribution of this risk parameter Θ has density (or mass)
function π(θ), which is known. (We will denote the distribution
function Π(θ).)
For a given value Θ = θ, the conditional density (or mass) of the
loss distribution fX |Θ(x |θ) is known.
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18.2 Conditional Distributions and Expectation

Conditional Distributions (revision)

fX |Θ(x |θ) =
fX ,Θ(x , θ)∫
fX ,Θ(y , θ) dy

fX |Θ(x |θ)fΘ(θ) = fΘ|X (θ|x)fX (x)

Conditional Expectation (revision)

E(X ) = E(E(X |Θ))

Var(X ) = E(Var(X |Θ)) + Var(E(X |Θ))
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18.2 Conditional Distributions and Expectation

Question 57

An insurance company models drivers as falling into two categories:
frequent and infrequent. 75% of drivers fall into the frequent category.
The number of claims made per year by a driver follows a Poisson
distribution with parameter 0.4 for frequent drivers and 0.1 for
infrequent drivers.
(a) Calculate the expectation and variance of the number of claims in a
year for a randomly chosen driver.
(b) Calculate the expectation and variance of the number of claims in a
year for a randomly chosen driver who made no claims in the previous
year.
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18.3 Bayesian Methodology

Question 58

The aggregate health claims (in a year) of an individual follows an
inverse gamma distribution with α = 3 and θ varying between
individuals. The distribution of θ is a Gamma distribution with
parameters α = 3 and θ = 100.
(a) Calculate the expected total health claims for a random individual.
(b) If an individual’s aggregate claims in two consecutive years are
$112 and $240, calculate the expected aggregate claims in the third
year.
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18.3 Bayesian Methodology

Question 59

The number of claims made by an individual in a year follows a
Poisson distribution with parameter Λ. Λ varies between individuals,
and follows a Gamma distribution with α = 0.5 and θ = 2.
(a) Calculate the expected number of claims for a new policyholder.
(b) Calculate the expected number of claims for a policyholder who
has made m claims in the previous n years.
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18.3 Bayesian Methodology

Question 60

The number of claims made by an individual in a year follows a
Poisson distribution with parameter Λ. Λ varies between individuals,
and follows a Pareto distribution with α = 4 and θ = 3. [This has mean
1 and variance 2, like the Gamma distribution from Question 59.]
Calculate the expected number of claims for a policyholder who has
made m claims in the previous n years.
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18.3 Bayesian Methodology

Answer to Question 60
Pareto Prior Gamma Prior

1 2 3 4
0 0.433 0.294 0.224 0.182
1 0.926 0.607 0.458 0.369
2 1.479 0.940 0.700 0.561
3 2.087 1.289 0.951 0.758
4 2.749 1.654 1.208 0.958
5 3.457 2.034 1.472 1.163
6 4.207 2.426 1.742 1.370
7 4.992 2.829 2.018 1.581
8 5.807 3.242 2.298 1.795
9 6.648 3.664 2.583 2.011

1 2 3 4
0 0.333 0.200 0.143 0.111
1 1.000 0.600 0.429 0.333
2 1.667 1.000 0.714 0.556
3 2.333 1.400 1.000 0.778
4 3.000 1.800 1.286 1.000
5 3.667 2.200 1.571 1.222
6 4.333 2.600 1.857 1.444
7 5.000 3.000 2.143 1.667
8 5.667 3.400 2.429 1.889
9 6.333 3.800 2.714 2.111
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18.4 The Credibility Premium

Problems with Bayesian Approach
Difficult to Compute.
Sensitive to exact model specification.
Difficult to perform model selection for the unobserved risk
parameter Θ.
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18.4 The Credibility Premium

Approach
Credibility premium is a linear combination of book premium and
personal history.

α0 +
n∑

i=1

αiXi

Coefficients are chosen to minimise Mean Squared Error (MSE)

E

(
µ(Θ)−

(
α0 +

n∑
i=1

αiXi

))2
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18.4 The Credibility Premium

Question 61

Show that the solution which minimises the MSE satisfies:

E(Xn+1) = α0 +
n∑

i=1

αiE(Xi)

Cov(Xi ,Xn+1) =
n∑

j=1

αj Cov(Xi ,Xj)
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18.4 The Credibility Premium

Question 62

Suppose the Xi all have the same mean, the variance of Xi is σ2, and
the covariance Cov(Xi ,Xj) = ρ. Calculate the credibility estimate for
Xn+1.
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18.4 The Credibility Premium

Question 63

Suppose we have observations X1, . . . ,Xn and Y1, . . . ,Ym, which are
the aggregate annual claims for each of two cars driven by an
individual. We assume:

E(Xi) = µ

E(Yi) = ν

Var(Xi) = σ2

Var(Yi) = τ2

Cov(Xi ,Xj) = ρ for i 6= j
Cov(Yi ,Yj) = ζ for i 6= j
Cov(Xi ,Yj) = ξ

Calculate the credibility estimate for Xn+1 + Ym+1.
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18.5 The Bühlmann Model

Assumptions
X1, . . . ,Xn are i.i.d. conditional on Θ.

We then define:
µ(θ)=E(X |Θ = θ) µ=E(µ(Θ))

ν(θ) =Var(X |Θ = θ) ν=E(ν(Θ))
a=Var(µ(Θ))

Solution

E(Xi) = µ Var(Xi) = ν + a
Cov(Xi ,Xj) = a

Recall from Question 62, that the solution to this is:

µ̂ =

(v
a

)
n +

(v
a

)µ+
n

n +
(v

a

)X
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18.5 The Bühlmann Model

Question 64

An insurance company offers group health insurance to an employer.
Over the past 5 years, the insurance company has provided 851
policies to employees. The aggregate claims from these policies are
$121,336. The usual premium for such a policy is $326. The variance
of hypothetical means is 23,804, and the expected process variance is
84,036. Calculate the credibility premium for employees of this
employer.
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18.5 The Bühlmann Model

Question 65

An insurance company offers car insurance. One policyholder has
been insured for 10 years, and during that time, the policyholder’s
aggregate claims have been $3,224. The book premium for this
policyholder is $990. The expected process variance is 732403 and
the variance of hypothetical means is 28822. Calculate the credibility
premium for this driver next year.
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18.6 The Bühlmann-Straub Model

Assumptions
Each observation Xi (expressed as loss per exposure) has a
(known) exposure mi . The conditional variance of Xi is v(θ)

mi
.

Cov(Xi ,Xj) = a

Var(Xi) =
v
mi

+ a

Solution

α0 =

( v
a

)
m + v

a
µ αi =

mi

m + v
a

µ̂ =

( v
a

)
m + v

a
µ+

m
m + v

a
X

where X is the weighted mean
∑n

i=1
mi
m Xi .
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18.6 The Bühlmann-Straub Model

Question 66

For a group life insurance policy, the number of lives insured and the
total aggregate claims for each of the past 5 years are shown in the
following table:

Year 1 2 3 4 5
Lives insured 123 286 302 234 297
Agg. claims 0 $300,000 $200,000 $200,000 $300,000

The book rate for this policy premium is $1,243 per life insured. The
variance of hypothetical means is 120,384 and the expected process
variance is 81,243,100. Calculate the credibility premium per life
insured for the next year of the policy.
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18.6 The Bühlmann-Straub Model

Question 67

A policyholder holds a landlord’s insurance on a rental property. This
policy is in effect while the property is rented out. The company has
the following experience from this policy:

Year 1 2 3 4 5 6
Months rented 3 11 8 12 6 9
Agg. claims 0 $10,000 0 0 $4,000 0

The standard premium is $600 per year for this policy. The variance of
hypothetical means is 832076, and the expected process variance is
34280533 (both for annual claims). Calculate the credibility premium
for the following year using the Bühlmann-Straub model.
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18.7 Exact Credibility

Question 68

Show that if the Bayes premium is a linear function of Xi , and the
expectation and variance of X are defined, then the Bayes premium is
equal to the credibility premium.
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18.7 Exact Credibility

Question 69

Show that if the model distribution is from the linear exponential family,
and the prior is the conjugate prior, with π(θ1)

r ′(θ1) = π(θ0)
r ′(θ0) , where θ0 and θ1

are the upper and lower bounds for θ, then the Bayes premium is a
linear function in X .
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19 Empirical Bayes Parameter Estimation

Approach
Estimate the distribution of Θ from the data.
Use this estimate to calculate the credibility estimate of µ.

Two possibilities

Either: We do not have a good model for the conditional or prior
distribution. We only need the variances, so we estimate
them non-parametrically.

or: We have a parametric model, such as a Poisson distribution,
which allows us to estimate the variance more efficiently
(assuming the model is accurate).
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19.2 Nonparametric Estimation

Question 70

An insurance company has the following aggregate claims data on a
new type of insurance policy:
No. Year 1 Year 2 Year 3 Year 4 Year 5 Mean Variance
1 336 0 528 0 0 172.80 60595.2
2 180 234 0 2,642 302 671.60 1225822.8
3 0 0 528 361 0 177.80 62760.2
4 443 729 1,165 0 840 635.40 192962.3
5 0 0 0 0 0 0.00 0.0
6 196 482 254 303 0 247.00 30505.0
7 927 0 884 741 604 633.60 140653.7
8 0 601 105 130 327 232.60 56385.3

(a) Estimate the expected process variance and the variance of
hypothetical means.
(b) Calculate the credibility premiums for each policyholder next year.
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19.2 Nonparametric Estimation

Theorem
Let X1, . . . ,Xn have means M1, . . . ,Mn respsectively. Let the Mi have
mean µ, and let Xi |M1 have variance σ2

mi
where all mi are known. Let

m =
∑n

i=1 mi .
We can obtain the following unbiassed estimators for µ and σ2:

µ̂ =

∑n
i=1 miXi

m

σ̂2 =

∑n
i=1 mi(Xi − µ̂)2

n − 1
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19.2 Nonparametric Estimation

Question 71

Let X1, . . . ,Xn all have mean µ, and let Xi have variance σ2
i

mi
, where all

mi are known, and let σ = E(σ2
i ). Let Mi have variance τ2. Let

m =
∑n

i=1 mi . Let m =
∑n

i=1 mi .
Show that the following is an estimator for the Variance of Hypothetical
Means:

µ̂ =

∑n
i=1 miXi

m

ˆVHM =

∑n
i=1 mi(Xi − µ̂)2 − (n − 1)σ̂2

m −
∑

mi
2

m
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19.2 Nonparametric Estimation

Question 72

An insurance company offers a group-life policy to 3 companies.
These are the companies’ exposures and aggregate claims (in
millions) for the past 4 years:
Co. Year 1 Year 2 Year 3 Year 4 Total

1
Exp 769 928 880 1,046 3,623

Claims 1.3 1.5 0.8 1.7 5.3

2
Exp 1,430 1,207 949 1,322 4,908

Claims 1.0 0.9 0.6 1.5 4.0

3
Exp 942 1,485 2,031 1,704 6,162

Claims 1.1 1.4 1.9 2.0 6.4
Calculate the credibility premiums per life for each company in the fifth
year.
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19.3 Semiparametric Estimation

Question 73

In a particular year, an insurance company observes the following
claim frequencies:

No. of Claims Frequency
0 3951
1 1406
2 740
3 97
4 13
5 3

Assuming the number of claims an individual makes follows a Poisson
distribution, calculate the credibility estimate for number of claims for
an individual who has made 6 claims in the past 3 years.
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19.3 Semiparametric Estimation

Question 74

Assume annual claims from one policyholder follow a Poisson
distribution with mean Λ. The last 4 years of claims data are:

Claims 0 1 2 3 4 5 6 7 8 9
1 year 3951 1406 740 97 13 3 0 0 0 0
2 years 3628 2807 1023 461 104 13 4 0 1 0
3 years 2967 4032 2214 890 734 215 131 22 0 2
4 years 1460 2828 2204 985 747 358 194 43 8 0

Calculate the credibility estimate of Λ for an individual who made 2
claims in the last 3 years of coverage.
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19.3 Semiparametric Estimation

Question 75

Claim frequency in a year for an individual follows a Poisson with
parameter Λt where Λ is the individual’s risk factor and t is the
individual’s exposure in that year. An insurance company collects the
following data:

Policy- Year 1 Year 2 Year 3 Year 4
holder Exp claims Exp claims Exp claims Exp claims
1 45 12 10 6 45 14 14 2
2 27 0 12 0 74 0 27 0
3 10 9 293 149 14 6 13 5
4 10 0 14 3 17 2 6 2

In year 5, policyholder 3 has 64 units of exposure. Calculate the
credibility estimate for claim frequency for policyholder 3.
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19.3 Semiparametric Estimation

Question 76

An insurer is reviewing aggregate claims data from last year. It
assumes that average aggregate claims for an individual follows an
exponential distribution with parameter varying between individuals.
The insurer has data from 1000 policyholders and finds that the
average aggregate claim is $689 and the standard deviation is $832.
What is the credibility premium for an individual who claimed $462 last
year?
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SN1.1 Introduction (Revision)
Reasons for Delays

Delays in Reporting
Claims Processing Delays
Legal Procedings

Approaches (revision)
Case-based estimation — Use adjustment estimates for each
claim. Usually only used for very large claims.
Expected Loss Ratio — Estimate losses from earned premiums.
Aggregate Run-off Triangle Methods — Project future from past.
For example Chain-Ladder and Bornhuetter-Fergusson methods.

Approaches
Credibility methods — Weighted average of two estimates.
Frequency-Severity — Separately estimate frequency & severity.
Parametric methods — Based on a parametric model. Usually
give same estimates, but better inference.

September 2, 2023 134 / 158



SN1.1 Introduction (Revision)

Run-off Triangles (Revision)

Accident Development Year
Year 0 1 2 3 4 5

0 801 962 887 728 560 77
1 879 1043 968 802 606
2 957 1155 1057 852
3 1033 1238 1144
4 1119 1340
5 1207

Entries give payments made in each development year, for each
accident year.
Antidiagonals correspond to payments made in a single calendar
year.
Assume at least AY0 is closed. Tail-factor methods exist if not.
Often work with cumulative payments by summing rows of triangle.
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SN1. 2.2 Chain-Ladder Method (Revision)

Notation
Xi,j — incremental payments made in development years 0–j for
claims in accident year i .
Ci,j — cumulative payments made in development years 0–j for
claims in accident year i . That is Ci,j =

∑j
k=0 Xi,k .

Method

Let fi.j =
Ci,j+1
Ci,j

.

Estimate an average f̂j for each j , either a direct average of fi,j , or

a weighted average f̂j =
∑I−j−1

i=0 Ci,j+1∑I−j−1
i=0 Ci,j

.

Use these f̂j to estimate all unknown Ci,j from Ci,j−1.
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SN1. 2.2 Chain-Ladder Method (Revision)

Question 77

For the run-off table:
Accident Development Year

Year 0 1 2 3 4 5
0 2006 2098 2321 1795 1387 431
1 2104 2204 2418 1893 1474
2 2196 2321 2533 1959
3 2314 2426 2659
4 2425 2563
5 2503

Estimate the future losses. (For convenience, this table is in the file
“RunOff1.txt”.)
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SN1. 2.2 Chain-Ladder Method (Revision)

Question 78

Suppose that claim inflation over the previous 5 years was given by the
following indices
Year 0–1 1–2 2–3 3–4 4–5
Inflation (%) 2 4 7 5 1

Where Year 0 represents Accident Year 0. Recalculate the expected
future claims from Question 77, adjusted for this inflation.
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Ĉi ,J as an Expected Value

Assumptions
There is a development factor fj such that E(Ci,j+1|Di+j) = fjCi,j

Ci,j and Cl,k are independent when i 6= l for all j and k .

Theorem
Under the above assumptions:

(a) f̂j is an unbiased estimator for fj .
(b) E(f̂0 f̂1 · · · f̂j) = f0f1 . . . fj for all j .
(c) Ĉi,J is an unbiased estimator.
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SN1 3.2 Testing Chain-Ladder Assumptions
Correlated Development Factors

Can use Pearson Correlation coefficients between years.
Significance based on normality and same variance.
Alternatively, can use Spearman rank correlation coefficient.
Weaker test but more robust.
Does not test correlation of the original variables.

Calendar Year Effects
Can arise from changes to settlement policy or claim inflation.
Simple test: rank the estimates ˆfi,j for each j , and count values
above or below the median on each antidiagonal.

Multiple Testing
Statistical tests reject true hypotheses α% of the time.
If we conduct many statistical tests (e.g. one test for each year)
the expected number of rejections is too high.
There are methods to correct for this.
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SN1 3.2 Testing Chain-Ladder Assumptions

Question 79

Test the assumptions of the Chain-ladder method in Question 77.
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SN1 3.2 Testing Chain-Ladder Assumptions

Question 80

Plot the estimated cumulative development factors for the adjusted
run-off table in Question 78.
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SN1 3.3 Bornhuetter-Fergusson Method (Revision)
Bornhuetter-Ferguson method

1 Calculate the expected ultimate claim payments (using expected
ultimate loss ratio times earned premiums)

2 Calculate loss development factors using chain-ladder method
3 Work backwards from expected ultimate payments using loss

development factors to get expected loss development.

Question 81

Recall Question 77, where the mean loss development factors were
Year 1/0 2/1 3/2 4/3 5/4

f̂j 2.051335 1.562058 1.279541 1.169903 1.044863
Suppose the expected loss ratio is 0.81, and the earned premiums are

Accident Year 0 1 2 3 4 5
Earned Prem. 11980 12105 12610 13240 14370 14600

Use the Bornhuetter Fergusson method to calculate the loss reserves
needed for each accident year.

September 2, 2023 143 / 158



SN1 3.5 Bühlmann-Straub Credibility Reserves
Assumptions

Losses from AY i follow distribution, with unknown θi drawn i.i.d.
Given θi , θi ′ , Xi,j and Xi ′,j ′ are independent.
If θi = θi ′ then Xi,j and Xi ′,j are identically distributed.
E(Xi,j |θi) = γjµ(θi) and Var(Xi,j |θi) = γjν(θi).

Method
Estimate EPV v = E(ν(Θ)) and VHM a = Var(µ(Θ)).

v̂ =
1
I

I−1∑
i=0

1
I − i

I−i∑
j=0

γ̂j

(
Xij

γ̂j
− Ĉi,J

)2

â =

∑I
i=0 β̂I−i

(
Ĉi,J − C

)2
− Iv̂∑I

i=0 β̂I−i − 1∑I
i=0 β̂I−i

∑I
i=0 β̂

2
I−i

Estimate credibility Zi =
β̂I−i

β̂I−i +
v̂
â

for each year.

Estimate µ = E(µ(Θ)), by µ̂ =
∑I

i=0 Zi Ĉi,J∑I
i=0 Zi

.

Estimate ĈBS
i,J = ZiĈi,J + (1− Zi)µ̂.

Estimate ĈBS2
i,J = Ci,I−i + (1− β̂j)ĈBS

i,J .
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SN1 3.5 Bühlmann-Straub Credibility Reserves

Comments

ĈBS2
i,j = Z ∗i Ĉi,j + (1− Z ∗i )µ̂ for Z ∗i = 1− (1− β̂i,I−i)(1− Zi).

Big assumption that µ is the same for all accident years. Can
change Xi,j to per-premium losses to make this assumption more
reasonable.
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SN1 3.5 Bühlmann-Straub Credibility Reserves

Question 82

For the run-off table from Question 77, use the Bühlman-Straub
method to estimate the total reserve payments needed.
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SN1 3.5 The Poisson Model

Assumptions
Xi,j are independent for all i and j .

Xi,j ∼ Po(µiγj) for some µi , γj > 0 such that
∑J

j=0 γj = 1.

Results
These are the same assumptions as BF. Thus, if µi is given a
priori, we can use the same estimates β̂i and γ̂i .
Ci,j and Ci ′,j ′ independent whenever i 6= i ′.
E(Ci,j+1|Dj) = Ci,j + (βj+1 − βj)µi

E(Ci,J |D) = Ci,j + (1− βj)µi
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SN1 3.5 The Poisson Model

Question 83

Show that the MLE estimate from the data under the Poisson model
gives the chain-ladder estimate for average loss reserves, and
calculate the variance of outstanding claims under the Poisson model.
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SN1 4 Mack’s Model
Assumptions

(1) For i 6= i ′, and any j , j ′, Ci,j and Ci ′,j ′ are independent.
(2) For Accident Year i , (Ci,j)j=0,...,J is a Markov chain (meaning for

k < j , Ci,j+1 and Ci,k are conditionally independent given Ci,j ).
(3) E(Ci,j+1|Ci,j) = fjCi,j for some factor fj .
(4) Var(Ci,j+1|Ci,j) = σ2

j Ci,j for some σ2
j .

Comments
(1) and (3) are the assumptions for the chain-ladder method.

For j 6 I − 2, unbiased estimator σ̂2
j =

1
I − 1− j

I−1−j∑
i=0

Cij

(
fij − f̂j

)2
.

When J = I, we cannot estimate σ2
J−1. Mack suggests using

σ̂2
J−1 = min

(
σ2

J−2, σ
2
J−3,

σ4
J−2
σ2

J−3

)
.
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SN1 4 Mack’s Model— Estimating the Variance
Theorem
The process variance for Ci,J |Ci,I−i is approximated by

Var(Ci,J |Ci,I−i) ≈ Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂j
2
Ĉi,j

Theorem
Under Mack’s model, we have

E
((

Ĉi,J − E(Ci,j |DI)
)2
)
≈ Ĉ2

i,J

J∑
j=I−i

σ̂2
j

f̂j
2
Sj

and

E
((

Ĉi,J − E(Ci,j |DI)
)(

Ĉi ′,J − E(Ci ′,j |DI)
))
≈ Ĉi,JĈi ′,J

J∑
j=I−(i∧i ′)

σ̂2
j

f̂j
2
Sj

where Sj =
∑I−1−j

i=0 Ci,j .
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SN1 4 Mack’s Model

Question 84

(a) Estimate σ̂2
j for all j for the run-off table from Question 77.

(b) Using these, estimate the variance of the outstanding claims.
(c) Estimate the mean squared estimation error for each Ĉi,J .
(d) Estimate the mean product of estimation errors for each pair Ĉi,J

and Ĉi ′,J , and use this to estimate the total MSE of the
outstanding losses. .
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SN1. 5 The Overdispersed Poisson Model

Poisson Model as a GLM
We can rewrite the Poisson model as log(E(Xi,j)) = c + αi + βj .
This is a Generalised Linear Model with log link.
The parameters αi = log(µi) and βi = log(γi) are estimated by
maximum likelihood.

Quasilikelihood and Overdispersion
Poisson log-likelihood is x log(λ)− λ (ignore the x! constant.)

Derivative of log-likelihood is
∑

i,j

(
xij
λij
− 1
)
∂λij
∂θ

This assumes variance is equal to x . If we replace the
log-likelihood function by the quasilikelihood function whose
derivative is ∂l

∂θ =
∑

i,j

(
φ

xij
λij
− 1
)
∂λij
∂θ

This is not the likelihood of an actual discrete distribution, but can
be used to approximate a large number of distributions.
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SN1. 5 The Overdispersed Poisson Model

Question 85

Fit an overdispersed Poisson model to the data from the run-off table
in Question 77.
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SN1.6 Frequency-Severity Models
Frequency

Separately analysing frequency and severity can show trends or
outliers which are not apparent in the aggregate claims data.
Chain-ladder assumptions are reasonable for frequency.
For frequency, we often need to analyse both reported and settled
claims. Reported claims usually have fast development.
Separate estimates of reported and settled claims inconsistent.
Better (but still inconsistent) approach: Estimate γS

j — proportion
of claims settled in development year j . Estimate claims settled as
γ̂s

j ĈR
i,J , where ĈR

i,J is estimated total reported claims.

Severity
Common approach for severity is to calculate cumulative average
severity. The chain-ladder assumptions here are dubious.
Longer settlement times usually correlated with larger claims.
Thus, better to calculate incremental average claim cost.
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SN1.6 Frequency-Severity Models

Question 86

An actuary is reviewing the following loss development triangles in the
files:

ClaimsReportedRunOff.txt
ClaimsSettledRunOff.txt
AggregateSettledPaymentsRunOff.txt

(a) Estimate the outstanding claim settlements using the chain-ladder
method on reported claims, and using the proportion of estimated
reported claims.

(b) Estimate the aggregate reserves using the average cumulative
losses and the average incremental losses per claim.
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3.9 Rate Changes
Overall Rate Change (Revision)

Loss cost method: New average gross rate = New Average Loss Cost
1−Expense Ratio

Loss ratio method: Rate Change = Expected Effective Loss Ratio
Permissible Loss Ratio − 1

Risk Classification Differential Changes
Rate manual consists of rate for base cell, and for each variable, a
vector of differentials — multiplicative factors.

Question 87

An insurer has three classes of risk - low, medium and high. Its
experience from the previous year is shown in the table below.
Risk Class Current differential Earned premiums Loss payments
Low 0.74 1,300 1,100
Medium 1 4,300 3,900
High 1.46 1,600 1,400

Calculate the new differentials for the coming year.
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3.9 Rate Changes

Question 88

An insurer has base rate $46.30 and expense ratio is 20%. Its
experience from the previous year is shown in the table below.

Earned Premiums Loss Payments
Male Female Male Female

Differential 1 0.88 1 0.88
Low 0.74 900 1,100 1,050 850
Medium 1 4,700 4,400 4,100 3,900
High 1.46 1,900 1,400 1,200 1,100

(a) Calculate the new differentials.
(b) If the base premium is adjusted by the loss ratio for this year,

calculate the loss ratio with the new differentials.
(c) What base premium would give the desired loss ratio?
(d) What would the new premiums be if the original differentials had

been 1.66 for female, 0.34 for low-risk and 1.89 for high-risk?
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3.9 Rate Changes

Question 89

The categories and differentials for three factors in 2022 were:
Age Sex Health Status
Young 1 Female 1 Healthy 1
Old 1.74 Male 1.18 Unhealthy 1.49

Earned premiums in accident year 2022 were:
Female Male

Healthy Unhealthy Total Healthy Unhealthy Total
Young 3,600 1,800 5,400 3,200 1,700 4,900
Old 7,300 6,900 14,200 5,300 5,800 11,100
Total 10,900 8,700 19,600 8,500 7,500 16,000
After reviewing the data from 2022, the new differentials are

Old 1.63 Male 1.14 Unhealthy 1.57
The total losses were $29,000. Calculate the percentage change in the
base premium which achieves a loss ratio of 0.8 with the new
differentials.
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