5 Continuous Distributions

5.3 Creating New Distributions

The mean of X is aaTB’ and the variance is W Thus, the standardised variable is 4/ % (X — QL%)
The density is therefore
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The gamma distribution has mean o and variance 2. Thus, the standardised gamma distribution is
X\/’aoéa. The density is

_ (a4 af) T e T e (arta)®T!
fxs(x) = Vabfx (Vabz + ad) = vao 6o (a) - M@

The density of the square of the standardised X5 is therefore given by
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Let X; be the percentage increase on day i. Let Y; = log (1 + fgg). Let V; be the value of the investment

after day 7. We have that V; = V,_1(1+ X;), so log(V;) = log(Vi—1) + Y;. Thus, log(Vaes) = log(Vo) + Zfﬁi Y.
365

By the CLT, we can approximate % > i21Y; by a normal distribution with mean E(Y;) and variance Va;é?’)

We can use the Taylor series approximation Y; ~ & so that E(Y;) = E(X:) — 0.0004 and Var Y)) = Var(‘)gi) =
100 100 100

0.0005. Thus Zfi‘? Y; is approximately normally distributed with mean 365 x 0.0004 = 0.146 and variance
365 x 0.0005 = 0.1825. Thus, the distribution of Vsg5 is approximately log-normal with p = log(Vy) + 0.146

0.1825

and 02 = 0.1825. [The mean of this is ety — Voel146+52= = 126775801767V}, and the variance is
e2u+202 . 62H+g'2 _ %2 (60'292+O'365 _ 60'292+0'1825) — 03217862639V02]




Let the losses be 10000.X; and 10000X>. We have that

P(X1+X2 >5) :Exl(P(XQ >57X1))

. ({ (x) X0 <5 )
1

otherwise

:P(X1>5)+/05(xfl)5(6ix>4dx
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= 0.00200997262988



(a) We have

P(X >10000) = E (P(X >10000©)) =E © O\ [ 0Pe s 25 0

Numerically we can evaluate this.

theta<—seq_len (1000000)/10
sum (exp(—theta /800)xtheta"5.5/(theta+10000)"2.5)/(10%x6+x800"4)

This gives P(X > 10000) = 0.03278301. [Varying the step size and upper bounds of the numerical integral
does not change the result, so this should be sufficiently accurate.]

(b) Given O, the expected aggregate loss is % = 1%, so the expected aggregate loss for a random individual

: © ) _ 4x800 _
is E (%) = 250 = $2,133.33.

(c) The VaR is the solution to P(X > a) = 0.01, which based on (a) becomes

® 03c— 3500 925
df = 0.01
/0 6 x 800% <(9+a)2~5>

Trying a few values gives VaR(X) = 18823. The TVaR is then given by

E((X — 18823),)
0.01

TVaR(X) = 18823 + = 18823 + 100E (E((X — 18823),|©))

Given © = 6, we have

> 0 20 > 2.5 —2.5 6%?
E((X — 18823 :/ < ) d:r:/ 0 °u""° du =
(« )+) 18823 \0 + T 1882340 1.5(18823 + 0)!-5

Thus the TVaR is

025 > 03¢ 500 925
E = do
(1.5(18823 + @)145) /0 6 x 8004 (1.5(9 + 18823)1~5)

Numerically, we can evaluate this

theta<—seq_-len (1000000)/10
sum (exp(—theta /800)xtheta 5.5/ (theta+10000)"1.5)/(1.5%10%6x800"4)

This gives
92'5
E = 157.5151
<1.5(18823 + @)1-5>

so the TVaR is 18823 4+ 100 x 157.5151 = $34,574.51.




(10000—4000)2 o
- e

|§| For the normal distribution, the density at x = 10,000 is me 2x30002 = 3000755 = 0.0000179969888378.

The normal distribution assigns probability ®(2) = 0.9772499 to X < 10,000, so for the probability to be 0.92,
the normal density needs to be rescaled by a factor % = 0.941417338595. Thus the rescaled Pareto
density needs to be 0.0000179969888378 x 0.941417338595 = 0.0000169426773344.

3
With parameter 6, the Pareto distribution has probability (Mﬁ) of exceeding 10000, so it needs to be

scaled by a factor of 0.08 (%)3 to get the correct probability. After rescaling, we want the Pareto density

at 10000, which is given by f(10000) = % to be 0.0000169426773344. Thus, we need to solve
0+10000\° 363
0.08 = 0.0000169426773344
( 0 ) (6 + 10000)*
3

———— = 0.00021178346668
6 + 10000

6 + 10000 = 14165.4117152
0 = 4165.4117152

The probability that aggregate claims exceed $25,000 is therefore

0.08 <14165.4117152)3 4165.41171523 14165.4117152
' (

3
= 0.08 [ =T 02 ) — 0.0091658608024
11654117152 ) (4165.4117152 + 250008 0 <29165.4117152> 0-009165



IRLRPCI 5 Intermediate topics

5.1 Individual risk rating plans

[

For the $50,000 to $100,000 increase, we consider only the policies with limit at least $100,000. For these
policies, the total losses limited to $100,000 are 41,000 + 26000 + 12300 = 79300, while total losses limited to
$50,000 for the same policies are 34000 + 23000 4+ 11000 = 68000. The ILF is therefore ggggg = 1.166176

For the $100,000 to $500,000 increase, the ILF is gégggﬁgggg = ggggg = 1.159269. The other ILFs are given
in the following table

Old Policy limit New Policy Limit
100,000 500,000 1,000,000
50,000 1.166176 1.305882  1.545455
100,000 1.159269  1.382114
500,000 1.268657

If instead, we use incremental factors, the incremental factors are on the diagonal of the above table, and
other factors are obtained by multiplying the incremental factors below them, so for example, the ILF from
$50,000 to $500,000 would be 1.166176 x 1.159269 = 1.351912, while the ILF for an increase from $50,000 to
$1,000,000 is 1.166176 x 1.159269 x 1.268657 = 1.715112. The ILFs based on this incremental method are
given in the following table:

Old Policy limit New Policy Limit
100,000 500,000 1,000,000
50,000 1.166176 1.351912  1.715112
100,000 1.159269  1.470715
500,000 1.268657




S|

The expected payments per claim are af —E((X — 5af)). By the memoryless property of the exponential
distribution E((X —5a6) ;) = adP(X > 5af) = afe™ 6 = afe~>. The expected payment per claim is therefore
(1 —e=%)ab.

After inflation, the new mean loss per claim is 1.1af. The expected payment per claim is 1.1af — E((X —
5a6)4), and E((X — 5af),) = 1.lafe 7tes = 1.le~T1af. The new expected claim payment is therefore

_ 5
1.1a0(1 — e~ 71). The percentage increase in claim payments is therefore % —1=9.5706%.



[0 We will use a normal approximation to aggregate losses.
(a) The expected value of a Pareto distribution censored at $50,000 is

5 6 _976
1 a 10000 1
1 ——du=1 SBda=1 ——| =—|1— =) =9%4,861.11
0000/0 A+ u)? U 0000/1 a a 0000{ 5 ]1 5 ( 62> $4, 86

The expected square of the payment censored at $50,000 is

5 6
100002/ 2 gy = 100002/ 2(a—1)a~? da = 10000 [a~ — 2a']° = 10000° <1 L. 2) = 69,444,444
o (14u)3 1 1 62 6
so the variance is 69444444 — 4861.112 = 45, 814, 043.

The mean aggregate loss is therefore 100 x 4861.11 = $486,111.11 and the variance of aggregate loss is
100 x 45814043 4 100 x 4861.11%2 = 6,944, 444, 444. Using a normal approximation, the 95th percentile of
aggregate losses is 486,111.11 + 1.645+/6, 944, 444, 444 = $623182.25. The risk loading as a percentage of the
gross rate is therefore 623182:25-48611L.11 _ 91 99535%,.

623182.25
(b) Censored at $100,000, the expected payment per loss is

10 11 _oq11
1 10000 1
10000/ ———du= 10000/ a=%da =10000 |———| === (1-—) =$4,958.69
o (1+u)3 . 2 |, 2 112
The expected squared loss is
10000° /10 2 gy = 100002 /11 2a—1)a* da = 100002 [a — 24" = 10000 (1 4+ = — 2 ) = 82,644,628
o (T+w)3 1 - 1 1z 1)

and the variance is 82644628 — 4958.69% = 58056144.
The mean aggregate loss is 100 x 4958.68 = $495, 867.77 and the variance is 100 x 82644628 = 8264462810.
The 95th percentile is then 495,867.77 + 1.6451/8264462810 = $645399.92. The risk loading as a percentage

. : 645399.92—495867.77 __
of the gross rate is therefore 615399 65 = 23.16891%.




Ia

The total number of claims is 3365. We calculate the average loss for each policy limit. For example for
policy limit $10,000, the total claims would be 6850000 + 1065 x 10000 = $17, 500,000, so the average claim
would be 17330900 — §5 200.59.

Policy limit Total claimed Average per claim Risk Charge Total charge

100,000 36,950,000 10980.68 2411.51 $13,392.19
500,000 52,350,000 15557.21 4840.53 $20,397.74
1,000,000 58,450,000 17369.99 6034.33 $23,404.31

The ILF from $100,000 to $500,000 is 2025772 — 1.523107. and to $1,000,000, it is 2330231 — 1.747609.

[For the pure premium, the ILFs would be 1.416779 and 1.581867 respectively.]
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Let the expected payment without the deductible be a, and the expected payment with the deductible
be b. The expected payment on a policy with limit $1,000 is @ — b. Thus from the definition of the ILF, we

have 4.62(a — b) = a. The loss elimination ratio is 1 — 2 = ¢=t = 1 = 21.645%.

11



Let agg21 and aggoo be the expected losses with limit $1,000,000 in 2021 and 2022 respectively. Let bggo;
and bog22 be the expected losses with limit $2,000,000 in 2021 and 2022 respectively. In 2021 the premium
for a policy with limit $1,000,000 is 1.25a2021;. Thus, the premium for a policy with limit $2,000,000 is
1.36 x 1.25(12021 = 1.7&2021. Hence the premium for the reinsurance is (17 — 1.25)0,2021 = 0.45@2021. If the
loading is l, then we have (1 + Z)(b2021 - (12021) = 0.45@2021.

Similarly, the premium for reinsurance in 2022 is (1.35 x 1.25 — 1.25)agp22 = 0.4375a2022. From the trend
factor, we have asgoe = 1.052a2021, so the premium in 2022 is 0.4375 x 1.052a9921 = 0.46025a2021. Thus
(1 + l)(bgogz — 1.052@2021) = 0.46025@2021. Substituting b2022 = 1.044b2021 gives

(1 + l)(1.044b2021 - 1.052(12021) = 0.46025(12021
Subtracting 1.044(1 + 1)(bap21 — ag021) = 1.044 X 0.45a9021 from both sides gives

(1 + l)(—0.00SCLQogl) = (046025 —1.044 x 0.45)@2021 = —0.00955&2021

~0.00955

1
1 0.008

= 1.19375

so the loading is 19.38%.
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SN2 Extreme Value Theory

General Extreme Value Distributions

18]

(a) We can use the following R code:

set .seed (12345) # For reproducability

x<—rnorm (10000000) # Simulate normal random variables.
bmaxsamps<—list () # A list of block maxima.

snum<—list () # The number of blocks.

for(n in seq-len(100)){
ssize<—floor (10000/n) # calculate number of blocks
snum [ [n]]<—rep (nx1000, ssize)
Mc—x[seq_len (nx1000*xssize )] # discard excess samples
dim (M)<—c (n*1000,ssize) # Make M into a matrix
bmaxsamps [ [n]]<—apply (M,2 ,max) # Take maximum of each column

}

all_samples <—data.frame(size=unlist (snum) ,max=unlist (bmaxsamps))
### The first column of this data frame is the sample size
##4# The second column is the block maxima.

library (ggplot2)

ggplot (data=all_samples ,mapping=aes (x=size ,y=max))+
geom _violin (mapping=aes (group=as. factor (size)))

(b) We first plot some graphs:
### Use GAM to fit a smooth curve.
ggplot (data=all_samples ,mapping=aes (x=size ,y=max))+

geom _violin (mapping=aes (group=as.factor (size)))+
geom_smooth (method="gam”)

###+ Try log—transforming block size

gegplot (data=all_samples ,mapping=aes (x=log (size ) ,y=max))+
geom _violin (mapping=aes (group=as . factor (size)))+
geom_smooth (method="gam”)

### Now the pattern is linear. Fit a linear model

Im (max~log (size),data=all_samples)

13



### calculate standard deviations of block maxima for each sample size

block_sd <—data.frame(size=seq_len (100)*1000,sd=rep (NA,100))
for(n in seq-len(100)){

block_sd$sd [n]<—sqrt (mean((all_samples$max[all_samples$size=n=*1000]—0.2581xlog (nx1000))
}

### plot them
ggplot (block_sd ,mapping=aes (x=size ,y=sd))+geom_point()+geom_smooth ()

####+ After a bit of experimentation, we find a function which fits reasonably.
gegplot (block_sd ,mapping=aes (x=size ,y=sd))+geom_point ()+geom_smooth()+
geom_line (mapping=aes (y=0.285+400/(size +5000)))

The plot suggests a log-linear model, and using linear regression give E(max) = 1.4736 + 0.2581 log(size).

To fit location, we calculate the standard deviation of residuals of this fitting and then fit a function to
them.

(c) We get the following plot of the rescaled block maxima.

ggplot (data=all_samples ,mapping=aes (x=size ,
y=(max—0.2581xlog (size))/(0.2854+400/(size+5000)),
group=as . factor (size)))+
geom _violin ()

14



T4
(a) We can use the following R code:

set.seed (12345) # For reproducability

x<—rexp (10000000) # Simulate normal random variables.
bmaxsampsexp<—list () # A list of block maxima.
snumexp<—1list () # The number of blocks.

for(n in seq_len (100)){
ssize<—floor (10000/n) # calculate number of blocks
snumexp [ [n]]<—rep (nx1000,ssize)
Mc—x[seq_len (nx1000xssize )] # discard excess samples
dim (M)<—c (n*1000,ssize) # Make M into a matrix
bmaxsampsexp [ [n]]<—apply (M,2 ,max) # Take maximum of each column

}

all_samples_exp <—data.frame(size=unlist (snumexp) ,max=unlist (bmaxsampsexp))
### The first column of this data frame is the sample size
##4# The second column is the block maxima.

library (ggplot2)

ggplot (data=all_samples_exp ,mapping=aes (x=size ,y=max))+
geom _violin (mapping=aes (group=as. factor (size)))

(b) We first plot some graphs:
### Use GAM to fit a smooth curve.

ggplot (data=all_samples_exp , mapping=aes (x=size ,y=max))-+
geom_violin (mapping=aes (group=as. factor (size)))+
geom_smooth (method="gam”)

### Try log—transforming block size

ggplot (data=all _samples_exp ,mapping=aes (x=log(size) ,y=max))+
geom_violin (mapping=aes (group=as. factor (size)))+
geom_smooth (method="gam”)

### Now the pattern is linear. Fit a linear model

Im (max~log (size ),data=all_samples_exp)

### Coefficient seems to be 1
### Can actually show that it is 1.

mean (all_samples_exp$max—log(all_samples_exp$size))

15



#H4 0.6220843

### calculate standard deviations of block maxima for each sample size

block_sd_exp <—data.frame(size=seq-len (100)*1000,sd=rep (NA,100))
for(n in seq-len (100)){

block_sd_exp$sd [n]<—sqrt (mean((all_samples_exp$max[all_samples_exp¥size=mn=1000]—log (nx1
}

### plot them
ggplot (block_sd ,mapping=aes (x=size ,y=sd))+geom_point()+geom_smooth ()
#### close to linear , but that doesn’t make any sense in the long run.

ggplot (block_sd ,mapping=aes (x=size ,y=log(sd)))+ geom_point()+geom_smooth (method="gam” )
####+ Again, linear seems a reasonable fit.

Im(log(sd) size ,data=block_sd_exp)
#HE fits sd=e " {0.2668 —7.018e—07«size}

The plot suggests a log-linear model, and using linear regression give E(max) = 1.4736 + 0.2581 log(size).
To fit location, we calculate the standard deviation of residuals of this fitting and then fit a function to
them.

(c) We get the following plot of the rescaled block maxima.

ggplot (data=all_samples_exp , mapping=aes (x=size ,
y=(max—log (size))/(exp(0.2668 —7.018e¢—07*size),

group=as . factor (size)))+
geom_violin ()

In fact, we can analytically solve this F},(z) = F(z)" = (1 —e~®)". In particular, if z = log(n) + ¢, then

we have F,(z) = (1 — e‘log(”)_c)n =(1- %) — ¢ " as m — oo. Thus, we see that the distribution of
M,, —log(n) converges to a Gumbel distribution.
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Lemma 1. Forx > e,

Proof.

ez +/_m<1+1>ye_y2d
2rx o \Y V2T Y
Thus, it is sufficient to show that

22
7 ()t ] 2 ot
o \Y T T

—x—0 ; —x
1 1 u? 1 1 2
/ <+> ye 'z dy+/ (—i—) ye 'z dy
Y T —z—6 \Y €z
—$5
1 1 _y2
L G)rFale LG )l
d

We have

LG
7_|_7
—co \Y T

<m+5>2

22

<t ST

M)

x 2

< e T (e—Qlog(a:) + 210g($)>

2

< 3log(z)e™ =
3
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For the log-normal distribution, we have F(z) = ® (M) S0

o

g

Mn_dn n 1 n dn - "
P(<x>P(Mn<cnx+dn)F(cnx+dn) <1><°g(c‘”+ ) “)
Cn

This gives

log | P My — dn 2)) = nloe (@ log (cpx +dyp) — 1
g( ( P )) g(( loga(cnx+dn2)ﬂ
nlog<1 (I)< o ))
( ’

(_log (cn + dy) — u>2>

r2 2 2 2
-3 e~ 2 log(ry) e
=-n + O +0|n
V21T, V2rrd V2,

log(cnz+dn)—p log(dn)—&-log(l-q— %I)

—p
where r, = - = = . For any x, we see that r,, — 0o as n — o0, so for any =z,

-2

M, —d, e~
log| P| — <=z — —n
& ( < Cn >) \V2rr,

2
Furthermore, = — 0, so we can use log (1 + g—x) = 2o+0 (CCT;x2>, which gives r, =
n n n 2
and so

Ko

log(d,,,)+;—2x+0<: x2> —p

3N

o

. o2 (loa(d)— 22 (o _
2 — =2 ( (log(dy)—p)?+2 C"(l"g(gd")’“)m-i-O ”(log’y”) 1) 2 _ (og(dn)=w? _ en(og(dn)=p) . O n (0 s’(gdn) n) .2
6—7 —e 20 n n —=¢ 7202 e 70 dn e n

_ (log(dn)—p)?

By definition of d,,, me 2072 = +/2m, so that
2
M, —d, log(d,,) — _cn(og(dn)=p) ;. O cp(ogldn) =) 2
log <P < < w)) — 08(dn) Hz e T e ( az, )
n log(dyn) + G~ + O (2—3:172) —
C C 2
= (1" 4 +o <”>) efzeo(l)w
< dn (IOg(dn) - U) dn (1Og(dn) - M)

—T

— €
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(a)

110l
We need to find ¢,, d,, and £ such that

nS(cpz + dy) = —log(He(x))

—x

For the Weibull distribution, the survival function is given by S(z) = e~*", so we need to solve

ne”(enotdn)” _y _ log(He(z))
rearranging gives
(cn +dy)" — —log (n" (log(He(x))) = log(n) — log(log(H(x)))

It follows that ¢ o + d,, = O (log(n)%). We consider three cases for the limit lim,, oo % If % — 00,

then

(chx+dy)" =d], <1 + (Clnx) =d} +1eadl o+ o(cpdi )

So we need
dl + Tendytr — log(n) + log(—log(He(z))) = o(1)

for all z. Tt follows that c,d’,~! = O(1). Let r = lim,,_, d7, —log(n). Then we have d?, —log(n) = r+o(1).
Similarly, if we let s = lim,, ;o ¢,d7 "1, then we have
r+ 7sz + o(1) = —log(—log(He(x)))
Thus,
—log(—log(He(x))) =7+ sz
This gives £ = 0.

We have d,, = flog(n)* and ¢, = —& 07 = %log(n)+ . Thus, we have

T—1 — = 7
Tdn 707~ 1log(n) = T

P(M, > 100) = P MZ - Hlogﬁ)? - 10(? — Glogl(n)? 1 exp [ —exp _w
2 log(n) 7 2 log(n)~~! 7 log(n)= !

n

The exact value is 1 — (1 — S(100))" =1 — (1 - e*(%O)T)
The probabilities are given in the following table:

n = 100 n = 1000
Exact 0.8480498 1.0000000
GEV  0.8369774 0.9999943
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The reinsurer needs to pay a claim in the next 100 years, if the maximum loss in those years exceeds
$20,000,000. That is, we want to calculate P(Migg > 20). By the GEV, we have that % ~ GEV(§).

We are given that ci1g9 = 1025 = 4.67232872836 and digo = 1043 = 6.40934037268. Thus,

Mo —d 20 — 6.40934037268 Moo —d
Pt > 20 = p (Mot ) < p (Y i

. 1
c100 1.67232872336 > 2.9087550 649)

€100
1 1
For the GEV with ¢ = 2, we have F(z) = e~ (11€2)¢ 5o F(x) = e~ (11292 Therefore

P(Migp > 20) = 1 — H5(2.90875501649) = 1 — ¢~ V1T2x2.90875501649 _ () 996541613201
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IS

(a) We use the following code

=

library (QRM)

x<—rnorm (1000000)

estimate .GEV<—function (x, size){
num_block<—floor (length (x)/size)
Mc—x[seq_-len (num_blockxsize )]
dim (M)<—c (size ,num-_block)
maxima<—apply (M, 2 ,max)
return ( fit .GEV(maxima))

}

GEV _ests<—rep (NA,100)

for (i in seq-len(100)){
try (GEV_ests[i]<—estimate .GEV(x,1%1000) $par.ests[1])
## Use a try block as there are a few errors.

}
plot (GEV_ests, type="1")

We see that the estimates fluctuate more as the block size increases, as there are fewer block maxima in
the samples.

We use the following code

GEV_ests<—matrix (NA,100,100)

### This time we use 2j°2 as block sizes to include both small and
### large block sizes to demonstrate the problems with each.
for (i in seq-len(100)){
x<—rnorm (1000000)
for (j in seq-len (100)){
try (GEV_ests[i, j]<—estimate .GEV(x,2%j "2)$par.ests[1])
## Use a try block as there are a few errors.

}

library (ggplot2)
library (reshape)
library (dplyr)
gegplot (GEV _ests%%melt (),
mapping=aes (x=2«X2"2 ,y=value , group=as. factor (X2)))+
geom_violin ()+
scale_x_log10 ()

We see that the estimates fluctuate more as the block size increases, as there are fewer block maxima in
the samples.
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Let X ~ G¢ . We will first show that X — d|X > d ~ G¢ g- where 5* = § + &d.
We have Sx_q x>a(z) = Sié)(f(z)d). For & # 0, this gives

(+)
(1+5
RS ¢
S\ 1+
</3+g(x+d))é
- B+&d

_ r \¢
‘(”mw)

=1-G¢ (p+ea) ()

=

Sx_qx>d(r) =

+ ™l
=

For £ = 0 it gives

a

o+

e

™|

Sx_qx>a(r) =

e

Tl

w8

e
=1- GO,B (x)
Thus, e(d) = E(X — d|X > d) is the expectation of a GPD with parameters £ and *. Since 3 is a

scale parameter, this is f* times the expectation of a GPD with parameters £ and 1. That is, we have
e(d) = (B + &d)eg 1, which is clearly a linear function, whenever eg ; is finite.
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120

(a) We use the following code to calculate the empirical MEL:

### Simulate data
x<—1/rgamma (100000 ,shape=4)

### sort data

x<—sort (x)

### Calculate Mean Excess Loss
MEI<—rev (cumsum (rev (x))/seq-along(x))

### Fit a linear model on the linear part.
Im(y~x,data.frame (x=x [x>0.4&x <3],y=MEL[x>0.4&x <3]))

We plot the empirical MEL on a graph and see that the linear approximation becomes reasonable at a
threshold of about 0.25.

Fitting a linear model on the linear part of the distribution gives e(d) = 1.2966d +0.1016. By Question
we see that this corresponds to the GPD parameters 15—_2& = 1.2966 or £ = ¥ 1'29662+4X21'2966_1'2966 =
0.662002594825 and g = 0.10161T_5 +£&d = 0.0518737186746 +0.662002594825d. In particular X —0.3|.X >
0.3 approximately follows a GPD with £ = 0.662002594825 and 8 = 0.0518737186746 4+ 0.662002594825 x
0.3 = 0.250474497123. Empirically Sx(0.3) ~ 0.42453. Using the GPD approximation,

1 7W12594825
Sx(1.3) = Sx(0.3)Sx_0.3x>0.3(1) ~ 0.42453x (1 + 0.662002594825 )

0.0518737186746
The empirical estimate for this probability is 0.00766. The actual value is 0.007949451.
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Suppose the distribution of X has e(d) = a + &d for some a and . We have e(d) = W, S0

de(d) _ —S(d) S'(d) 7 S(x) dx
dd — S(d) S(d)?
= Ad)e(d) —1
where A is the hazard rate function of X. Substituting e(d) = a 4 £d, and thus dzgld) = £ gives
§+1
Ad) =
(4) a+&d

Since the hazard rate is fixed, this determines the distribution up to a scale. Thus, the only distributions with
linear MEL functions are the Generalised Poisson distribution.
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Since the GPD with £ = 0.4 and 8 = 300 is a good approximation for X — 4200/X > 4200, we

Sx (4200+x) Sx (4200+I)

have Sizo0(2) = =5 @200 = oo5 > So the 99th percentile of X is the solution to Sx(y) = 0.01, so

Saz00(y — 4200) = 821 = 0.2. That is, we need to solve

1

_ 42 0.4
(1 1 0.43100) —02

300
y — 4200 0.4
04 ——— =51
300
y =750 (5% — 1) + 4200
= 4877.74045404

For the TVaR, we have that

300 + 0.4 (4877.74045404 — 4200)
1-04

TVaRg.90(X) = VaRg.go(X)+e(VaRo.g9 (X)) = 4877.74045404+ = 5829.5674234

25



SN2 5.4.4 The Hill Estimator

Since F is in the MDA of a Fréchet distribution, the survival function of X is of the form S(z) = L(x)af%.
Thus Sieg(x)(7) = Sx(e*) = L(e®)e” . Since L is slowly varying, we have that Ls.f(m:) ) 5 1 for any fixed t as

x — 00, the mean excess loss of log(x) is then given by

- f;o S(e”)dz fdoo L(e")e™ ¢ da I L(ew)e_xzd x = > L(e™t) e ¢ dx
o S(ed)y Lied)e ¢ _/d L(e?) d _/0 L(e?) d

e(d)

x+d
For each z, as d — o0, Lée(ed)) — 1, s0
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We use the following code:

set.seed (1234)
n<—1000000
x<—200/rweibull (n, shape=8.7)
x<—sort (x)
Ix<—log(x)
Hill . alpha<—1/(rev ((cumsum(rev (1x))/(1+seq-along(1x))))[—1] —1x[—n])
GPD.MLE<—rep (NA,n)
for (i in seq-len(1000)*n/2000+n/2—1){
print (i)
GPD.MIE[i]<—fit .GPD(x,nextremes=n—i)$par.ests[” xi”]

### Only plot every 1000th point to reduce computation.
plot (1x[seq-len (9999)%1000], Hill . alpha[seq_-len (9999)%1000],
xlab=expression (log (threshold)),ylab=expression (hat (alpha)),

ylim=c (3.5,10))

### Compare MLE. Remember that alpha=1/xi.
points (1x [which (!is .na(GPD.MLE))],1/GPD.MLE[ which (!is .na(GPD.MLE))], col="red”)

Computing the MLE takes a while, so we only compute for a sample of thresholds.

27



<&

I I I I I I
5.2 5.4 5.6 5.8 6.0 6.2

log(threshold)

We see that for the thresholds between about 5.5 and 5.8, the Hill estimate is relatively stable, and not
too far from the true value 8.7. For larger thresholds, the estimates start to become unstable due to the small
sample size.

The MLE is close to the truth in a narrow range between about 5.55 and 5.7.
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7.3 Compound Distributions
Let A be the random Poisson parameter. We have

=E (e‘AAn)
n!

E (e‘AA")
n!

where A ~ Gamma(a = 0.4,6 = 3). The MGF of the Gamma distribution is My (t) = E (e*). We thus get
that M} (t) = E (Ae’') and more generally M[(\n)(t) =E (A"e?") Thus, we have E (e74A") = M/(\n)(—l).
For the Gamma distribution with shape « and scale 8, we have My (t) = (1 — 0t)~“. Differentiating gives
Mj(\n) (t) = (=0)"n!(7*)(1 — 6t)=*~". Thus we have
E (e ™A") = MM (=1) = (—6)"n! (_O‘> (1+60)~> "
n

Thus
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7.1 Compound Distributions

Let P be the pgf of the secondary distribution. Let @) be the pgf of the primary distribution. Let R be the

pef of the compound distribution.
Note that Q'(z) =Y oo ngnz""t =307 (na+b)g,—12""" = azQ'(2) + (a+b)Q(z) so Q'(z) = (erabz)Q( 2)
We therefore have R/(z) = P'(2)Q'(P(z)) = P'(2) I_Z?Z}Z)Q(P(z))
We therefore get

(1—aP(2))R(2) = (a+b)P'(2)R(2)

Letting the probabilities of the primary distribution be p,, and the probabilities of the compound distribution
be r,, and writing this equation in power series then equating coefficients of z*~1 gives

(1—a§%pnz"> (Timrmzm_l> (a+ D) (ann ) (grnz">

k—1 k
(1 —apo)kri —a an(k —n)Tk—pn = (a+b) Z NPpTh—_n
n=1 n=1

=1 n=1

(I + b) )pnrkfn

n—

k k

(1 —apo)kri =a Y pu(k —n)r—n+ (a+b) > nprk_n
1
k

k
Z —1 (Cl + b%) PnTk—n
1 —apo

T =
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From first principles:
Let N be the primary distribution. Since a sum of i.i.d. Poisson random variables is Poisson, the conditional

distribution of the compound distribution is S|N = n ~ Po(nA1). Thus we calculate the probabilities for the
compound distribution by P(S = k) = E(P(S = k|N)).

P(S = 0) = E(P(S = k|N))

oo n

= )\1)\2€_>\1_)\2+)\167>\2
P(S = 2) = E(P(S = k|N))

0 n 2
—en 3 A (nA2)
ne0 n
& n 2
— M Z /\716—11,\2 (nA2)
n! 2
n=0

N s (eea)”
=5 n (n—1)!

n=1
oo (e_kz)\l)m

1 -
= 5/\1/\56 Memrz ), Z(m—|—1)

m=0

m/!

1, o < (e A)" & (e

MAZ _ “p o
_ 22e A=Az (e A2\ e¢ My et >\1>

2
_ >\12>\2 eMA (R 4 1) O
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Using the recurrence:
The p.g.f. of the compound Poisson distribution is P(z) = e

—X2_q .
e’\l(e ) Now the recurrence is

Thus we get

32

A (eX2G=D 1)

This gives pp = P(0) =



Binomial has pgf P(s) = (1 — p + ps)™, negative binomial has pgf P(s) = (1 + 8 — 8s)~". The geometric
distribution has pgf P(s) = The compound binomial-geometric therefore has pgf

D )n:<1+ﬂ1—ﬁ1p—(1—p)518>n
1+ 81— Bis 1+ 61— Bis

1
1+8—PBs"

P(s) = (1 —-p+
while the compound negative binomial-geometric has pgf

(HBﬂz)T_<(1+52>(1+63)—52—/33<1+52>s>’”
T 14 By — Bas 1+ B3 — B3s

< 1+ B3 — B3s >T
(1+ B2)(1+ B3) — B2 — B3(1 + B2)s

We see that these are equal by setting 81 = 83(1 + 52) and p = %
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pgf of Poisson is P(s) = A=) pef of logarithmic is %, so the pgf of the compound Poisson-
log(l—as) ﬁ .
logarithmic is e’\( os(=ay ~1) — e ati=m (lo8(1=as)~log(1=a) _ (%?)1 R Setting A = —rlog(l — a), and
a= %, this becomes P(s) = (1 + 8 — 8s)~", which is the pgf of the negative binomial distribution.
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Bi0]

Let secondary distributions have pgf Q(s) and R(S). Then compound distributions have pgf e*t(@()=1)
and e*2(F()=1) 5o since they are independent, we have that their sum has pgf P(s) = e*(Q()=DeAa(fi(s)=1) —
eMQE)=DF2(R()=1)  Setting A = A\; + A2, we get

A1 Q(s)+Aa R(s)
1 FAp (s _1)

P(s) = e)\(

so this is a compound Poisson distribution where the secondary distribution has pgf w. This is the
pgf of a mixture of the distributions with pgf @ and R.
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(a) If the secondary distribution has raw moments pq, ph and uj, then we have

E(S) = E(E(S|N)) = E(NE(X)) = E(N)E(X)

= A1

E(S%) = E(E(S?N)) = E(E (X1 + - + X))
=E(NE(X?) + N(N - DE(X;X;))
=E (N’E(X;)* + N Var(X;)))
=E (N?)E(X;)* + E(N) Var(X;))
= A+ Vi + Aph — p7)
= Nuf + Ay

Var(S) = E (N?) E(X;)? + E(N) Var(X;)) — E (N)* E(X;)?

= Var(N)E(X;)? + E(N) Var(X;)
= A

E(S°) = B(E(S*[N)) = (E (X1 + - + Xx)*))

=E Z E (X, X;X})
04, k=1
—E (NE(X;”) + N(N — DE(X2)E(X;) + N(N — 1)(N — 2)E (Xi)3)
= E(N)ps + E(N(N — 1)) paph + E(N(N = 1)(N — 2))ps}
= Aty + N pph + At

The centralised third moment is therefore

Aty + N gy + N — 3Aun (N2 f 4+ Aay) + 2207 = Aty — 202 gy

The skewness is ) ) , )
Ay =20y py o/t

(Ap) AN Vi

. . r r(r+1)8%+r r(r+1)(r+2)834+3r(r+1)8%+r
(b) The ETNB distribution has pu; = #, wh = W and ph = (r+1)( +12?1I/3)£r+ AR iy

Thus, the skewness of the compound Poisson-ETNB distribution is
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57 o B < N RS VR AR GRSV R E 2/Arf
()t JEEDEEE ()82 +r8) VAT (T4 B VI (Bl + D)5+ 78
B A2 32 <(T+1)(r+2)52+3(7"+1)5+1 2>
N+ +rB) (- (1+5)7T) A(r(r+1)8% + 1)
_ A3 ((r+1)(r+2)ﬁ2+3(r+1)5+1 _2>
V(B F) A - (14 8)T) Ar(r+1)8% +1p)
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2]

a) The M.G.F. of the gamma distribution is M(t) = (1 — 6t)~* = ((1 — 9t)_%)n for any positive integer n.
This is the M.G.F. of a gamma distribution.
b) The M.G.F. of the inverse gamma distribution for is given by

2] 2]

Mt =B = [ POy we = [T,
= o 0 ot () o - o T (a)

—3 <t<0is M(t)=(1+06t)* = ((1+ Gt)%)n Thus, (1 + 6t)= is the M.G.F. of another inverse gamma
distribution.

_2p?t

¢) The M.G.F. of the inverse Gaussian distribution is M (t) = exp (z (1 —4/1 7 )) This gives

M(t)% = exp (Tit (1— 1- ?t))

This is the M.G.F. of another inverse gaussian distribution.

d) Since the binomial distribution is discrete, it is easier to use its P.G.F. P(z) = (1 — p + pz)". To divide as
a sum of m i.i.d. random variables, where m > n, we have

P(z)m = (1—p+pz)™ )
=(1-p)~ (1+ 1ppz>m
~0nt 2 (1) ()

k=0

3

In particular, we can see that the coefficient of z is negative, so this is not the P.G.F. of a probability
distribution.

Easier way: The binomial distribution has finite support. Since it is discrete, any division must also be

discrete. Consider the (n + 1)th division. If this has only 1 possible value, the sum would also have one
possible value. If it has two, then there are at least n + 2 possible values for the sum.
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9.3 The Compound Model for Aggregate Claims

B3]

We have
n P(N=n) Z P(A > 130|N = n)
0 04 00 0
1 03 0.8571  0.1957
2 02 —1.414 0.9214
3 01 —2.804 0.9975

So the probability is 0 + 0.3 x 0.1957 4+ 0.2 x 0.9214 + 0.1 x 0.9975 = 0.0587 + 0.1843 + 0.0997 = 0.3427.
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9.4 Analytic Results
B34

The severity is exponential with mean 6. The frequency is negative binomial with parameters » = 2 and 5.
The aggregate severity of n losses therefore follows a gamma distribution with o = n. We therefore have that
the probability that the aggregate loss is zero is pg = ﬁ, while if it is non-zero, the pdf of the aggregate
loss is

- o (n+1) zf "
=(1+pB) 2% 1+5 Z n_1'( 1+6))

‘We have

S

QI 2|+
SIESIE

|
=
+

Substituting this into the equation above gives

2 -z ﬁ l’ﬁ e(%)
F() = (1+5)" (1+5><<e<1+/3>)”) o
=(1+8)"*028 (2B +2) e TrH

This is a mixture of gamma distributions.
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Alternatively, we can obtain this result using moment generating functions. For an aggregate loss model
whose frequency distribution has probability generating function Py(z), and whose severity distribution has
moment generating function Mx(t), the aggregate loss model has moment generating function Mg(t) =
Py (Mx(t)).

In the case of the negative binomial gamma distibution, Py(z) = (14 8 — 8z)"" and Mx(t) = (L) :

1-6t
sty =(140-5(115) )

In the particular case r = 2, = 1 gives

Ms(t) = (1+ﬁ—51_19t>2 - <(1+6)1(1__9t9t)_6>2 - (1—1(1_4—9;)915)2

- (1Jlrﬁ * (1f5> 1—(11+5)0t>2

1 B 1 32 1

S8R U BT e (AR (- (11 B)02

This gives

This is a mixture of a point mass at 0 with probability (1+/3)~2; an exponential distribution with mean (1+3)6
2
with probability (117%)2; and a gamma distribution with 8 = (1 4 5)0, « = 2 with probability ((1:_#5)) .
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B

By the general result, the compound negative binomial-exponential with » = 15, § = 2.4 and 6 = 3000 is
the same a compound binomial-exponential with n = 15, p = g:—i = % and 6 = 3000 x 2.4 = 7200.
If there are n claims, the aggregate loss follows a gamma distribution with o = n and 6 = 10200. The
204000) e te=® g

expected payment on the stop-loss insurance is then 10200 f %24200000 (as ~ 0200 ) =1
We have - )
x"e™” a a”
/ dr=e(1l+a+—+...+ —
a n! 2 n!

so the expected payment on the stop-loss insurance if there are n claims is

[e’e} xn—le—ac ee] e % e’} xn—le—w
10200/ x—20) 5 dz = 7200 (/ Sl /S 20/ dx)
o T Gy w0 (0= 1) o (1)

0
o0 n,—x 0 ,n—1_,—=x
:10200(n/ re el dx—20/ roe 'dx)
20 n: 20 (”*1)

20? 20" 20? 20"t
=10200e " (n (14204 -+ -+ = ) =20 (1 +20+ S+ +
n! 2! (n—1)!

2!
202(n — 2) 20m 1 )

fr— _20 — —_— DR
= 10200e (n+20(n )+ =+t T

The overall expected payment on the stop-loss insurance is therefore

15
15\ 1275157 202(n — 2) 2071

10200¢~20 el 20(n—1) + "2y
‘ 7;(<n> 1715 )("+ =)+ ———+ +(n—1)!>

= 12n515"> & 20

_ 15
n=1 =0 )

We can evaluate this sum in R using matrix operations:
expseries <—207(0:14)/factorial (0:14) #The terms in k
nvect<—dbinom (1:15,size=15,prob=12/17)  #The terms in n
nminusk<—pmax (rep (1,15)%*%t (1:15) —(1:15)*rep (1,15),0) #the n—k term
t (expseries)%«%nminusk%«%nvect /exp(20)x10200  #The expected payment
This gives the expected payment on the stop-loss insurance as $137.17.

42



9.5 Computing the Aggregate Claims Distribution

ETNB r = —0.6 8 =71,

a = _B_ 7 b= (qu-lﬁ)ﬁ — 14

18 — &
0 = goorogy = 0.7365057 g2 = (§ — %) ¢ = 0.1288885 g3 = (§ — 57) g2 = 0.05262947

(n+1) (%)n 0.0625 0.0625 0.09375 0.1054687890625 0.1054687890625

po = 0.0625

p1 = 0.09375 % 0.7365057 = 0.06904741

po = 0.09375 % 0.1288885 + 0.1054687890625  0.73650572 = 0.06929383

p3 = 0.09375 % 0.05262947 + 0.1054687890625 * (0.7365057 * 0.1288885 * 2) + 0.1054687890625 * 0.73650573 = 0.06709359

So the total probability that the aggregate loss is at most 3 is 0.0625 4 0.06904741 + 0.06929383 + 0.06709359 =
0.2679348.
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9.6 The Recursive Method

B7

7 2 i —i n i (i i .
The recurrence formula gives fs(n) = S TENC o) = 530, 2870 (29)' (34" fsln—i)
fx(0) = 53w

o0

fs(0) =e7>4 ZO %ﬁ:n, = e3s17 24 = 0.09071937

fs(1) = % (10 x g x f5(0)> = 0.000009907995

fs(2) = % <120 X % x fs(1) + 10 ; L (;g)z X f3(0)> = 0.00003798119

fs(3) = 3?;0 (130 y % X fo(2)+ % y (;2)2 « fo(1) + w x <§§)3 « f5(0)> — 0.0001058901

So the probability that the aggregate loss is at most 3 is therefore 0.09071937+0.000009907995+0.00003798119+
0.0001058901 = 0.09087315
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B8
For the zero-truncated ETNB distribution, we have that

a= 2 =3 p=LD8_ 19

+8 8
—0.6 x 3
— 0% ().7968484
N = 4106 1)
1.2
g2 = (i - 2) 0.7968484 = 0.119527260
3 1.2
0= (5 — =5 ) 0119527260 = 0.04183454100
3 1.2
a1 = (5 — == ) 0.04183454100 = 0.018825543450
3 1.2
g5 = (4 5) 0.018825543450 = 0009601027159
3 1.2
g6 = <4 6) 0.009601027159 = 0.005280564937
3 1.2
g = <4 7) 0.005280564937 = 0.003055183999
3 1.2
g8 = (4 8) 0.003055183999 = 0.001833110399
3 1.2
do = (4 9) 0.001833110399 = 0.0011304180793
3 1.2
00 = (4 10) 0.0011304180793 = 0.0007121633899
3 1.2
qi1 = <4 11) 0.0007121633899 = 0.0004564319907995
3 1.2
Gs = <4 12) 0.0004564319907995 = 0.0002966807940196
3 1.2
G5 = (4 13) 0.0002966807940196 = 0.0001951246760669

With the deductible set at 10, the probability that a loss does not lead to a claim is 0.7968484+-0.119527260+
0.04183454100 + 0.018825543450 + 0.009601027159 + 0.005280564937 + 0.003055183999 + 0.001833110399 +
0.0011304180793 = 0.9981311736993669 The distribution of the claim value is therefore

go = 0.9981311736993669
g1 = 0.0004564319907995
g2 = 0.0002966807940196
g3z = 0.0001951246760669

45



For the primary distribution a = % =2and b= (Tlllgﬁ = -0.3.

Now we can use the recursive formula

> iy (0375 — 83) i fs(n — i)
1—2x0.99813

fs(n) =

We calculate

fs(0) = ipm(o»" S(EE) oy

n=0

0.2 —0.2
_ (Z) (1 - ‘;fx(o)) — 0.9997759

Now using the recurrence, we get

~0.075 x 0.000456 x 0.9998

1= — 0.0000546982
fs(1) L 0.00005469823
0.225 x 0.000456 x 0.0000547 + 0.075 x 0.000297 x 0.9998
2) = =0. 2
£5(2) s 0.00003556283
0.275 x 0.000456 x 0.0000356 + 0.175 x 0.000297 x 0.0000547 + 0.075 x 0.000195 x 0.9998
fs(3) = . . i . : 625700; + X X — 0.00002339517

The probability of paying out at least $400 to a single driver is therefore 1 — 0.9997759 — 0.00005469823 —
0.00003556283 — 0.00002339517 = 0.0001104438
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9.6.2 Applications to Compound Frequency Models

The zero-truncated logarithmic distribution has ¢ = 0.8, b = —0.8. This gives p; (ZZOZO 2_?_?) =1
P1 = ~gioog = 0-4970679.

p1 = 0.4970679
po = 0.1988272
ps = 0.1060412

Now we compound with a Poisson with A = 0.1. The probability of the total being 0 is ¢!

secondary distribution is zero-truncated). The recurrence is

(since the

0.12
fotm) = 30 g -1
i=1
So we calculate:

fs(1) = 0.1 x 0.497 x e~ %1 = 0.04970679¢°
fs(2) = 0.05 x 0.497 x 0.04970679¢ "' 4+ 0.1 x 0.199¢~ ! = 0.0211181¢
fs(3) = (0.0333 x 0.497 x 0.0211 4 0.0667 x 0.199 x 0.0497 + 0.1 x 0.106) e~} = 0.010705¢~°-*

Now for the overall compound distribution, we have f4(0) = e~ 63> n, e=01n — g6e™""1 =6 _ o—0.5709755 _
0.564974.

The recurrence is

(i) fa(n —1i)

3\@:

=35

So we calculate:

fa(1) =6 x 0.0497e~ %1 x 0.564974 = 0.1524635
fa(2) =3 x 0.04970679¢ %1 x 0.1524635 + 6 x 0.0211181e™ ! x 0.564974 = 0.08534651
fa(3) =2 x 0.04970679¢ %1 x 0.08534651 + 4 x 0.0211181e~ %! x 0.1524635 + 6 x 0.010705¢ ™! x 0.564974 = 0.05216554

So the probability that the total claimed is more than 3000 is

1 —0.564974 — 0.1524635 — 0.08534651 — 0.05216554 = 0.1450505
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9.6.2 Underflow Problems
a00)

The recurrence is

" Ni(n+3 i 4 .
fs(n) = ; ; ( N )0.6875 0.3125% fs(n — 9)

(a)

The mean of the distribution is 96 x 8.8 = 844.8, and the variance is 96 x 28.16 + 96 x 8.8% = 48 x (28.16 +
77.44) = 96 x 105.6 = 10137.6 The standard deviation is therefore 1/10137.6 = 100.6856, so six standard
deviations below the mean is 422.4 — 6 x 100.6856 = 240.6864. We will start the recurrence at 241. If we
assume that f5(240) = 0 and f5(241) = 1, then we can calculate the values

fs(n) = zn: 9:i (i +1)(i+2)(i +3) 0.6875°0.3125 f5(n — i)

n 6
=1
(b) Solution for A = 12
"L 126 2)(i+3 ;
7’ H(; J0+3) ) 687510.3125% fo(n — i)
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=12

Convolving from lambda

0.004

0.003

0.002

0.001

0.000

0.000

I I I
0.001 0.002 0.003

Starting Recurrence 6 standard deviations below mean
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9.6.3 Numerical Stability

z81]
For the binomial distribution a = —7& b= (n+1)1%;
The recurrence relation is

50 = =5 (,i(‘”b) y)fula - >>

x

1 p Y
- IR0 (Z ((n 1)~ 1) fo(y) fs(x — y))

y=1

p - y
T 1-p+pfx(0) <; ((” +1)7 - 1) fa(y) fs(x = y))

Substituting p = 0.8, n =7 and f,(0) = 0.21, f,(1) = 0.41 and f,(3) = 0.38, this becomes

0.8 n+1 n+1
fs(x):1—0.8+0.8><0.21 <0.41( . —1>f5(x—1)+0.38<3—1>fs(x—3)>

50 n+1 n+1
== <O4l< . 1>fs(x1)+0.38<3 . 1)fs(m3))

= (jé (”:1—1>fs< )+22<3n:1—1)fs(13—3))
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9.6.5 Constructing Arithmetic Distributions

(a) Using the method of rounding, we have

1 1 2n—1 1 2n—1 1
pp=1—e 26 =1—€e"4p, =€ 20 ((1 — e_§> —e 4 ((1 — e_§>
This is a zero modified geometric distribution.
(b) On the interval [a, a + 2], we have

a+2 N u 2 a
/ e dr=e %(1—e %) =0.632120558829¢ %
a

1 CL+2 x a 2 2 t t
7/ xe 2dr=ce" 2 (a(le2)+/ —e 2 dt>
2 /. 0 2
2 2 2 t
=73 (a(le2)+ {fte*%}OJr/ e 2 dt)
0

—e 2 (a(l —e =271 42 (1 - eil))
—e 2 (0.632120558829a + 0.52848223532)

1 a+2 . “ 2 _t . 2 _t Qt _t 2 t2 ,%
- e 2dr=e"2 (a2+2at+t2)2dt= e 2 a,2/ € dt+2a 6—Zdt—k/ c
2 a 0 2 0 2 0 2 0 2

2 _t
e % <0.632120558829a2 12 x 0.528482235324 + / R dt)
0

2

a . 2 2 t _t
e % <0.632120558829a2 +1.05696447064a + {_ﬁe—g} 44 / 62 2 dt)
0

e~ % (0.632120558829a° + 1.05696447064a — de~! + 4 x 0.52848223532)
e~ % (0.632120558829a° + 1.05696447064a + 0.6424111766)

Therefore, matching moments on this interval gives us

a

Pa + Pat1 + Pata = 0.632120558829¢ >
apa + (a+ 1)Pat1 + (@ + 2)pa+2 = (0.632120558829a + 0.52848223532) ¢~ 2
a’pa + (a+ 1)%pas1 + (a + 2)*pate = (0.632120558829a” + 1.05696447063a + 0.64241117658) e~ 2

We solve these:

o1



a

Pas1 + 2ato = 0.52848223532¢ 3

(a+ 1D)pas1 + 2(a + 2)para = (0.52848223532a + 0.64241117658) e~ 2
2paro = 0.11392894126e~ 2
Pata = 0.05696447063¢~ 2

Pas1 = 0.41455329406e~ 2

a

Do = 0.160602794139¢™ 2

Thus for an odd number
Pont1 = 0.41455329406e™"

and for an even number

pan = 0.160602794139¢ ™" + 0.05696447063¢~ ("1
= 0.31544827952¢ "
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16 Model Selection

16.3 Graphical Comparison

43l
The log-likelihood of this Pareto distribution is

14 (log(a) 4+ alog(8))—(a+1) (log(6 + 325) + log (0 + 692) + log(8 + 1340) + log(8 + 1784) + log(8 + 1920) + log(# + 2503) + log(6 -

Differentiating with respect to o and 6 give

14

— = (log(6 + 325) + log(0 + 692) + log(6 + 1340) + log(6 + 1784) + log(6 + 1920) -+ log(6 + 2503) -+ log(§ + 3238) + log (0 + 4054)
* @¢nf(-_,, . .t .t .t ., ., .t 1 1
a_ .,

9 01325 61692 6+1340 O+ 1784 ' 9+1920 6+ 2503 613238  0+4054 ' 615862 6+ 6304

0 = 4156615 o = 934.25
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See next slide.
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m 10
1— e~ ot = 0.8317909
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50
1 — e~ 5ooom = 0.4141926
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531
0.69-8725 = (.6403788
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16.4 Hypothesis Tests

02

. 1 (ssens ) g gaig604 1 - (asess ) goa6s3s
(a) 1 - (4156615+5862) - - (4156615+9984) -
D = 0.1605338

e At the 95% level, the critical value is %

e At the 95% level, the critical value is }/'% = 0.3260587.

= 0.3634753.

so we cannot reject the model.
(b) We have that F(z) =1— (mf—ie)m so the statistic is

9« 2
n/u (Fn(ac) t o 1) ad” dz
\ (9&((%9)%%)) (z + §)o+T
@+0y%=

) Fo(2) + e — 1 ’
[ ot oy ( <<x+o(>a+9—)oa>) ;

N CELTCETEDp
(x 4+ 0)et1((z 4 0)> — 6)

o a e w0 (@8 -6
/t<x+e><F"”<<x+e>a—ea> 25 @)+ T e )d

For a constant value F,(z) = ¢, we have

T

T

/b02 a(z +6)>1 2ac  af(xz+60)* —6%)
o ((

— d
r+OHe—0%) x40 (z + 0)ot+1 o

o b
= ¢ flog((x +0)* = 6%)], — 2ac [log(z +0)], + o log(z + O)], - [a]

T+ 0)x
oy (Ot (b oo e
_Clog((a+9)a—aa)+ (1 Q)Ig(a+9)+(b+9)a (at0)
_2q o lat O (b +0)* - 6%) C21ee (2O oo
_C10g((b+0)a((a+0)°‘—0)>+a(1 )lg(a+a>+(b+e)a @+t o)

For our example, if we let ¢ = 0 and u = oo, we have the following;:
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ilali2e 325+9 13 210 692 + 6 12\° 1340 +6Y (11 210 1784 + 6
& 12) ®\32519¢ 14 69210 12) ¢\ 1310190
(0N o (192040 (9T (250340 (8)F828840Y (TN (405440
14) °®\ 178110 14) ¢\ 192010 12) %\ 250319 12) %\ 323816
(6 e (B36240N (6N (6304+0Y (5P (692640 4 * Lo (692646
14) 5\ 105410 14) %\ 586210 114) %\ 630410 &\ 6304+ 0
. 3)? L (812040 2)? g (17610 1) | 9984+9
14) %\ 692610 14) *®\8120+ 0 14) %8 9176+0

= (.3873562

So the model cannot be rejected.
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b4l
If the parameter of the Exponential distribution is 6, then the log-likelihood of the data is

10000

74210g(1 — e~ (*#)) + 13041og(e~(*7") — e~ (*5™)) 4 10221og (e (") — ¢~ (*5%)) 4

sa0log(e” (9) — e (45) o tog(en (48°) — o (4) 13 (2000

Taking the derivative with respect to 6, we get

4o 5000~ (*%) 1304 (5000e (*%°) — 10000e~(*%™))

92(1_6_(%) e ( OOU) (10200))
_(10000) _(15000) ( 0000) _(20000)

099/ (10000 — 15000e" () 830(15000e — 20000e~(*%*))

92( (10000) . 67(10300)) 92( (10000) . 67(20300))
(20000~ (*8**) — 25000¢~(*5")) 25000
211 92( (20000) _(25200)) - 143 02 = 0
— €
02(1767 5000)

Multiplying by TOG gives

500!

742¢= (%) 1+ 1304(1 — 2~ (%)) + 1022(2 — 3¢~ (%)) + 830(3 — 4~ (*¥)) 4

5000

211(4 — 5e~ (%)) — 143(5 — 5e~ (%

)=0
5967 — 10076~ (*%*) = o
)

_ (5000 5967
e 0 ) =
10076
0— 5000
-~ log (Foer)
= 9543.586
This gives the following table
Claim Amount 0O; E; (OLEiE‘)z
0-5,000 742 1733.969 567.49
5,000-10,000 1304 1026.855 74.80
10,000-15,000 1022 608.103 281.71
15,000-20,000 830  360.118 613.10
20,000-25,000 211 213.262 0.02
More than 25,000 143 309.694 89.72
total 1626.85

This should be compared to a Chi-square with 5 degrees of freedom, so the model is rejected at all signifi-
cance levels.
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For the exponential distribution, the log-likelihood is

_<382 596 920 1241 1358 1822 2010 2417 2773 3002 3631 4120 4692 5123

9+6+9+9+9+9+9+9+0+9+9+9+9+9+14log(9))

This is maximised by

3824596 4 920 + 1241 4 1358 4 1822 + 2010 + 2417 + 2773 + 3002 + 3631 + 4120 + 4692 + 5123
o 14

Which gives a log-likelihood of — (14 + 14 1og(2434.786)) = —123.1666.
For the Weibull distribution, the log-likelihood is

0 = 2434.786

0

Setting the derivatives with respect to 6 and 7 equal to zero gives:

141og(7) + (7 — 1)(log(382) + - - - + log(5213)) — <(382)T ot (51:3)7 + 147 log(9)>

gt T gril g
3827 4o 451287 _ .
14 N

M 10g(382) + - - + log(5213)) — ((:?) log (322> T (5{023> log (51;3» ~ 14l0g(0) = 0
=

174 + (1 — (322>T> log(382) + -+ + (1 - (51:3>T> log(5123) =0

This gives the solution 7 = 1.695356 and 6 = 2729.417
l(z;7,0) = —120.7921
The log-likelihood ratio statistic is therefore

(38T 51237 14)
T + it — =1 =0

2(—120.7921 — (—123.1666)) = 4.749

For a Chi-square with 1 degree of freedom, this has a p-value 0.04703955, so the Weibull model is preferred
at the 5% significance level.
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Study Note: Information Criteria

_e
For the inverse exponential distribution, with parameter 6 the likelihood is [];-_; aewf and the log-likelihood
is

1(6) = nlog(0) + >~ ~2log(x) - g

So the likelihood is maximised by § = <2+ = 1399.291. This gives a log-likelihood of 141og(1399.291) —

=1
S 2log(e) — 630, L = —124.202.
Now for the AIC, we get:
Weibull: —120.7921 — 2 = —122.7921 Inverse Exponential: —124.292 — 1 = —125.292

For BIC, we get
Weibull: —120.7921 — 2 log(14) = — — 123.4312 Inverse Exponential: —124.292 — 1 log(14) = —125.6115
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18 Greatest Accuracy Credibility

18.2 Conditional Distributions and Expectation

7]
(a) Let © = 1 for frequent drivers, and © = 0 for infrequent drivers. Then

E(X|©=1)=04
E(X|©=0)=0.1
Var(X|© =1) =04
Var(X|© =0) =0.1

SO
E(X) = E(E(X|0©) = 0.75 x 0.4+ 0.25 x 0.1 = 0.325

and

Var(X) = E(Var(X|0)) + Var(E(X|0)) = 0.325 4 0.3% x 0.25 x 0.75 = 0.325 + 0.016875 = 0.341875

(b)
e 0% ife=1

rix=ve)={ o o,

So
0.75¢0-4
PO=1X=0) = = 0.6896776
( | ) 0.75e=9-4 4 0.25¢—0-1

Therefore the new expectation and variance are:

E(X) = E(E(X|0) = 0.6896776 x 0.4 + 0.3103224 x 0.1 = 0.3069033

and

Var(X) = E(Var(X|0))+Var(E(X|0)) = 0.3069033+0.32x0.3103224x0.6896776 = 0.325+0.016875 = 0.3261653
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18.3 Bayesian Methodology
(a) We have E(X|© =6) = £, so
E(X)=E(E(X|0 =0) =E (2) =150

(b) The joint density function is

92 s 93 _e
fX’@(x’e)_<2x10036 )(m )

For samples, x1 and x2, the joint density is therefore

02 e 0% _ o 03 _
- 100 - T - ED)
2000000 20,1 Qg

_ P e(aerds)
8000000214z

The posterior distribution of © is therefore a gamma distribution with & = 9 and § = ——2—— =

w0t et Ey
43.29897.
The expected aggregate losses are given by

E(X) = E(E(X]0)) = T

= 4.5 x 43.29897
= 194.845365
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3

)
(a) We have
E(X)=EEX|A))=EA)=1

(b) The posterior distribution is a Gamma distribution with o = 0.54+m and § = ﬁ We therefore have

E(X) = E(E(X|A)) = E(A)
2(m +0.5)

1+2n
2m +1

2n+1

B (1J2rn2n> (%) * (1+12n>
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60]
The posterior density function is proportional to

34
(3+XN)°

4)\m67n)\

We have that the posterior expected number of claims is the posterior expected value of A, which is given by

foo A?n«#lef'n)\ d>\

0 ~ (3tA)P
oo A'm,e—n)\
fo [EEBIE dA

Substituting u = A + 3, these integrals become

J5Sum (u = 3)™ e dy

J5S u(u — 3)yme=m du

The credibility estimate is then given in the following table:

1 2 3 4 5 6 7 8 9 10
0.4331 0.2937 0.2243 0.1821 0.1534 0.1327 0.1170 0.1046 0.0946 0.0864
0.9261 0.6073 0.4580 0.3693 0.3101 0.2675 0.2354 0.2103 0.1900 0.1734
1.4785 0.9396 0.7003 0.5614 0.4697 0.4044 0.3552 0.3169 0.2862 0.2609
2.0874 1.2891 0.9506 0.7579 0.6321 0.5430 0.4764 0.4246 0.3831 0.3491
2.7487 1.6543 1.2081 0.9584 0.7970 0.6833 0.5987 0.5331 0.4806 0.4377
3.4571 2.0336 1.4722 1.1627 0.9642 0.8252 0.7221 0.6424 0.5788 0.5269
4.2067 2.4256 1.7423 1.3704 1.1336 0.9686 0.8466 0.7525 0.6776 0.6165
49919 2.8288 2.0178 1.5811 1.3050 1.1134 0.9721 0.8633 0.7769 0.7065
5.8073 3.2420 2.2981 1.7948 1.4782 1.2594 1.0985 0.9749 0.8768 0.7970
6.6477 3.6640 2.5829 2.0110 1.6531 1.4065 1.2257 1.0870 0.9771 0.8878

We compare this to the table of % that we get from the Gamma prior.

1 2 3 4 ) 6 7 8 9 10
0.3333 0.2000 0.1429 0.1111 0.0909 0.0769 0.0667 0.0588 0.0526 0.0476
1.0000 0.6000 0.4286 0.3333 0.2727 0.2308 0.2000 0.1765 0.1579 0.1429
1.6667 1.0000 0.7143 0.5556 0.4545 0.3846 0.3333 0.2941 0.2632 0.2381
2.3333 1.4000 1.0000 0.7778 0.6364 0.5385 0.4667 0.4118 0.3684 0.3333
3.0000 1.8000 1.2857 1.0000 0.8182 0.6923 0.6000 0.5294 0.4737 0.4286
3.6667 2.2000 1.5714 1.2222 1.0000 0.8462 0.7333 0.6471 0.5789 0.5238
4.3333 2.6000 1.8571 1.4444 1.1818 1.0000 0.8667 0.7647 0.6842 0.6190
5.0000 3.0000 2.1429 1.6667 1.3636 1.1538 1.0000 0.8824 0.7895 0.7143
5.6667 3.4000 2.4286 1.8889 1.5455 1.3077 1.1333 1.0000 0.8947 0.8095
6.3333 3.8000 2.7143 2.1111 1.7273 1.4615 1.2667 1.1176 1.0000 0.9048

© 00O U W = O

© 00O Ui Wi +— O
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18.4 The Credibility Premium

[GI]
We are trying to choose «; to minimise

E (u(@) — (ao + i aiXZ-)) =FE | 1n(©)? —2u(0) (ao + i aiXZ) + (ao + i aiXi>
i=1 i=1 i=1
=E (,u(@)Q) —209Eu(0) —E (u(@) (i aiXZ-)) + ap? + 20E (i aiXZ-) +E <i aiXi>
i=1 i=1

i=1

n n n 2
= /~52 + w2 — 2a00p + a02 + 2aE <Z OZZXZ> —E <,u(@) <Z 041X1>> +E (Z CVZX1>
=1 =1

i=1

Setting the derivative with respect to ag equal to zero yields

: (WE <ZX> _u) ~0

That is, o should be chosen to make the estimate unbiassed. Now we differentiate with respect to a;, and
set the derivative equal to zero:

i=1

f )
2 (E (u(G) - Zn:aixi) E(X;) - E (Xj (M(e) - zn:aixi> ) =0
8

Cov (Xj7 H(@)) = Z Q; Cov (Xja XZ)
=1

Since X; and X, 11 are conditionally independent given ;(©), we have that Cov (X, u(©)) = Cov (X, X5 41)
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In this situation, the second normal equations becomes:

p= (ZO{“}) +Ozj0'2
i=1
P (1-— E:‘L:l ;)

J 0,2

So all the a; are equal to a common value ¢, and we get

p(1—na)

o =
o2

Now we have E(X,,+1) = p = E(X;) The first normal equation then becomes

H= oo+ (Z%) H
i=1

= o + nap

ag = (1 —na)u
We can therefore rewrite our credibility estimate as

ZX +(1-2Z)u

where Z = na. We can then solve:
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03

Let the coefficients of the X; be «;, and let the coefficients of Y; be 5;. The normal equations are:

M+V=ao+zaiu+25¢v
j=1 k=1

P+€=§:%P+§:&é+am2

J#i k=1
CHE=D ae+ ) Bl + B
j=1 ki

From these, we deduce that 3;(7 — () = 5;(7 — (), and so ; = 8; = 8 (assuming the Y; are not perfectly
correlated). Similarly, o; = aj = . Substituting these into the normal equations gives:

This gives

(

(n—1)p+r
ng

w4+ v =ay+nayp+ mpr
p+&=a(ln—1)p+0°) +mp¢
C+E=nag+p((m—1)C+17)

(n—1)p+0o?
ng

(=D2) (C+6) - (p+€)

Jero-6+o=( ) Bl = 1)¢ + ) - mse

p= z
(=25 ((m = 1)¢ + 72) — me
_ ((n=Dp+0%) (C+&) —nélp+8)
(n=1)p+02) ((m —1)¢ +12) — mng?
oo =1+ 1) - mEC+E)

((n=Dp+02) ((m = 1)¢ +72) — mng?
ap=(1—na)u+ (1 —mp)v
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18.5 The Buhlmann Model

04

We have Z = % = 0.9958687, and X = 121336 — §142 58 so the credibility premium is

0.9958687 x 142.58 4+ 0.0041313 x 326 = 143.34
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We have Z = —29 -+ = 0.2823961, and X = 3224 — 322.40 so the credibility premium is
10+ 28822 10

0.2823961 x 322.40 + 0.7176039 x 990 = $801.47
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18.6 The Buhlmann-Straub Model

66

The weighted mean is 155229 = 805.153. The credibility is Z = 55 %tsmmor = 0.6479325. The credibility
+ 120384

premium is therefore
0.6479325 x 805.153 + 0.4520675 x 1243 = $959.30
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(o
The weighted mean is 1(4;0)0 = $3,428.57. The credibility is Z =
12

credibility premium is therefore

49
12

(Ls))_,'_(sm
12 832076

= 0.09017537. The

0.09017537 x 3428.57 + 0.90981463 x 600 = $855.07
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18.7 Exact Credibility

03]
The Bayes premium is the conditional expectation of X, 1 given Xi,...,X,,. We are given that it is a
linear function of X;. That is

E(Xn1| X1, Xn) = a0 + )X
i=1

Now recall that

COV()Q7 XnJrl) = ]E(Xan+1) — E(XZ)E(Xn+1)
=EEX;Xn+1|X1,. .., X)) — E(XH)DEE(X 41| X1, -+, Xn))

= ]E(Xl Z Oéij) — E(Xl)E(Z anj)
j=1 Jj=1
= Zaj (E(XiX;) — E(X,)E(X)))

= Zaj COV(XZ', X])

Jj=1

This means that the second normal equation is satisfied by the Bayes premium. We also have

E(Xn41) = E(E(Xp41|X1,..., X)) = E (ao +y aiXi>
i=1

So the first normal equation is satisfied. Thus the Bayes premium is the credibility premium. [Technically,
need to show this is the only solution].
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09|
The conjugate prior is
m(0) o h(0)e*" @ q(6) 7"
We choose h(8) = Cr'(6).
We now show:

Proposition 1. The marginal mean is %

Proof. We have that C' is given by

01
C / 7 (0)e*" D g(0)"P do =1

0o
We note that

so integrating by parts gives

ar b1 01
c Ge a(e)q(a)ﬁ} B ear(e)q’(ﬂ)q(9)51d9> =1

We have that E(X |0 = 0)

__4d(®
= g () 5°

/ 01 / 01
E(X) = E(E(X|6)) = E (q(g;@g@)) -/ 0 (q(g;%) O (0)e@q(0) P = C [ ¢ (0)e™ @ g(0) 0

o
Thus ;
ar(0) 1
c [e q(o)ﬁ] + R0 =1
@ 9, O
L. 7(61) 7(60) RO —8 01 .
By the conditions o) = o0y Ve have that [Tq(H) ]9 = 0, which completes the proof. O
0

The posterior distribution is

r(0 i r(0)(a+> " X
7(0)er® X :CT,(H)GM(QMlog(q(e))erw)ZXFNIOg(q(,,)):cw(e)eu( TPy Xi)
()~ q(0)7 N

By the above proposition, the mean of this is %, which, for fixed N is clearly a linear function of
e Xi
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19 Empirical Bayes Parameter Estimation

19.2 Nonparametric Estimation
[

(a) The overall mean is 2728 = 346.35
;. 60595.241225822.8+62760.2+192962.34-0.0+30505.0+140653.7+56385.3 _ 1769684.5 _
The EPV is s = S = 221210.5625

The total variance is
(172.80—346.35)%+(671.60—346.35)%+(177.80—346.35)% 4 (635.40—346.35) % +(0.00—346.35) % +(247.00—346.35) % +(633.60—346.35) 2 4 (232.60—346.35)% __
- =

67592.36
The VHM is 67592.36 — 221210:5625 — 93350.25
(b) The credibility of 5 years of experience is

5

= 221210.5625
5+ =53350.25

= (.3454569

The premiums are

0.3454569 x 172.80 + 0.6545431 x 346.35 = $286.40
0.3454569 x 671.60 + 0.6545431 x 346.35 = $458.71
0.3454569 x 177.80 + 0.6545431 x 346.35 = $288.12
0.3454569 x 635.40 + 0.6545431 x 346.35 = $446.20

0.3454569 x 0.00 + 0.6545431 x 346.35 = $226.70
0.3454569 x 247.00 + 0.6545431 x 346.35 = $312.03
0.3454569 x 633.60 + 0.6545431 x 346.35 = $445.58
0.3454569 x 232.60 + 0.6545431 x 346.35 = $307.05
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In general, we can write the aggregate loss per unit of exposure for the ith company in the jth year as
Aij = M; + E;; where M; is the mean aggregate loss per unit of exposure for the ith company, and E;; is the

. . . . 2 . .
process variation, which has mean 0 and expected variance .>—. The estimated mean for each company is
ij

1 1 1 1

We let E; = mi > m;;E;;, and see that E; has mean 0 and expected variance 7%2

Now we consider o o,
S mi(Ai = p)? =3 m (M; = 5) + (B; — Ey))

Since the F; are assumed to have mean 0 for each ¢, we should have Cov (MZ - M, E; — E) = 0. This gives
E (D mi(Ai = @)?) = > mi (B((M; — 7)) + E((E; - Fi)?)
We have that %El;m = 0?2, the expected process variance. Therefore, we calculate

E (D mi(Ai = %) = (0= 1)0% = 3" mi (B(M; - IE;)?)

We are interested in the variance of the M;, where the probability of each i is assumed to be 7¢. We
have that Var(M; — M) = Var(M;) + Var(M) — 2 Cov(M;, M). We know that Var(M;) = 0,,% the variance
of hypothetical means. Since M = Y~ i M;, we have that Var(M) = 0,2 Y T;Li; and Cov(M;, M) = g, 2.
This gives that

o (r-5)
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In total the aggregate claims were 15.7 million, and the total exposure was 14,693 lives. The average claim

per life is therefore 1517406090300 = 1068.54. The averages for the three companies are:
5300000
=1,462.88
3623 ’
4000000
——— = 815.00
4908
6400000
=1 .62
6162 ,038.6

The variances for the three companies are:

769(1690.51 — 1462.88)% + 928(1616.38 — 1462.88)2 + 830(909.09 — 1462.88)2 + 1046(1625.24 — 1462.88)>

3 = 116443575
1430(699.30 — 815)% + 1207(745.65 — 815) + 949(632.24 — 815)% + 1322(1134.64 — 815)?
3 = 63905244
942(1167.73 — 1038.62)% + 1485(942.76 — 1038.62)2 + 2031(935.50 — 1038.62)2 + 1704(1173.71 — 1038.62)? — 97347095
3 =

The expected process variance is therefore:

3623 x 116443575 + 4908 x 63905244 + 6162 x 27347095
14693

= 61528266

We have that
3623(1462.88 — 1068.54)2 + 4908(815.00 — 1068.54)2 +6162(1038.62 — 1068.54)2 = 884406185

We have that
884406185 — 2 x 61528266 = 761349653

We also get

2 2 2 2
m;© 36237 + 4908° + 61627
m — g = 14693 — 11693 = 9575.949

: ; ;. 761349653 _
The variance of hypothetical means is ‘ge==g75> = 79506.44

The credibilities of the three companies’ experiences are therefore

3623
= e = 0.8239938
3623 + 79506.44
4908
= e = 0.8637989)
4908 + 79506.44
162
5 016 = 0.8884240

= 61528266
6162 + 556 12

78



The credibility premiums per unit of exposure are therefore:

0.8239938 x 1462.88 + 0.1760062 x 1068.54 = $1,393.47
0.8637989 x 815.00 + 0.1362011 x 1068.54 = $849.53
0.8884240 x 1038.62 + 0.1115760 x 1068.54 = $1,041.96

The credibility-weighted average is

0.8239938 x 1462.88 4 0.8637989 x 815.00 4 0.8884240 x 1038.62
0.8239938 + 0.8637989 + 0.8884240

= $1,099.34

Using this average, the credibility premiums are

0.8239938 x 1462.88 + 0.1760062 x 1099.34 = $1,398.89
0.8637989 x 815.00 + 0.1362011 x 1099.34 = $853.73
0.8884240 x 1038.62 + 0.1115760 x 1099.34 = $1,045.39
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19.3 Semiparametric Estimation

73]
There are a total of 3193 claims from 6210 policyholders, so the estimate for u is % = 0.5141707. Since

for a Poisson distribution the mean and variance are equal, this gives the expected process variance is also
v = 0.5141707. We calculate the sample variance

6210 (1406 + 740 x 4 +97x 9+ 13 x 16 +3 x 25
6209 6210

so the variance of hypothetical means is 0.6249401 — 0.5141707 = 0.1107694 and the credibility of 3 years
of experience is

— 0.51417072> = (.6249401

3

= 0.5141707
3+ 01To7694

= 0.3925771

so the credibility estimate is

0.3925771 x 2 4 0.6074229 x 0.5141707 = 1.097473
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re!

42590 claims were made in 91221 years by 34285 policyholders.

The global mean is therefore p = 3333? = 0.4668881 claims per year.

For the Poisson distribution, the mean is equal to the variance, so the expected process variance is also
0.4668881.

As in Question [72] the estimator for VHMs is

2
Zmi<;‘; 0.4668881) — (n—1)EPV

%
>omi?
m

VHM

m —

We compute

2
> m; (” - 0.4668881) = 3951(0 — 0.4668881) + 1406(1 — 0.4668881) + 740(2 — 0.4668881) + 97(3 — 0.4668881)2

my
+13(4 — 0.4668881)% + 3(5 — 0.4668881)* + 2 (3628(0 — 0.4668881)* + 2807(0.5 — 0.4668881)*
+1023(1 — 0.4668881)2 + 461 (1.5 — 0.4668881) 4 104(2 — 0.4668881)% + 13(2.5 — 0.4668881)2
+4(3 — 0.4668881) + (4 — 0.4668881)%) + 3 (2967(0 — 0.4668881)"
+ 4032(0.33333333 — 0.4668881)? + 2214(0.66666667 — 0.4668881)* + 890(1 — 0.4668881)?
+ 734(1.33333333 — 0.4668881)2 + 215(1.666666667 — 0.4668881)% 4 131(2 — 0.4668881)>
+22(2.33333333 — 0.4668881)% + 2(3 — 0.4668881)°) + 4 (1460(0 — 0.4668881)>
4 2828(0.25 — 0.4668881)2 + 2204(0.5 — 0.4668881)2 + 985(0.75 — 0.4668881)2
+ 747(1 — 0.4668881)% + 358(1.25 — 0.4668881)% + 194(1.5 — 0.4668881)% + 43(1.75 — 0.4668881)?
+8(2 — 0.4668881)?)

= 19670.9022002

;2 6210 x 12 + 8041 x 22 + 11207 x 32 + 8827 x 42
2 MiT _ g1997 — AT+ X 9;;21 ki X 91217.92539
m

NG — 19670.9022002—34284x0.4668881 __
So VHM = 00234284 = 0.0401687559121

Because the different policyholders have different exposure, we should use a credibility-weighted average
here. We calculate the credibility for different numbers of years of history:

m —

Years Credibility Total claims Total policyholders
1 HOW =0.079219431596 3244 6210
0.0401587559121
1 ——oeemssr— = 0.146808756915 6749 8041
2—"_0.0401§87559121
1 —asssssr— — 0.205153938061 16099 11207
3+W
1 s==r— = 0.256030059119 16498 8827

0.46688
44’0 0401687559121

The credibility weighted average is therefore

0.079219431596 x 3244 + 0.146808756915 x 6742 4 0205153938061 x 16292 1 0.256030059119 x 16498
0.079219431596 x 6210 + 0.146808756915 x 8041 + 0.205153938061 x 11207 + 0.256030059119 x 8827

so the credibility estimate is

= (.466866294171
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0.205153938061 x 0.66666666667 + 0.794846061939 x 0.466866294171 = 0.507856127415
The expected number of claims is therefore 0.507856127415 x 64 = 32.5027921546.
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The total exposure is 454+ 10+45+ 14 4+27+ 12+ 744+ 27+ 104293+ 14+ 13+ 10+ 14+ 17+ 6 = 631
units.

The means for each individual are: m = 0.2982456, 140 =0, % = 0.5121212, and 47 = 0.1489362.
The average value of A (Using equal weighting of policyholders) is therefore 2082456-£0-+0. 5121212+0 1489362 _
0.2398258, so this is the expected process variance, because the variance of a Poisson dlstrlbutlon is equal to
the mean.

Suppose the hypothetical means are A;, A2, A3, and A4, and denote our es/t\im/gtefl\ means by XI, 5\;,
A3, and As. We have that E(A;[A;) = A; and Var(\;|);) = 2t Letting A = 21+22428M e have that
=202+ -02+ (5 -3+ (X —X)*

3

is an unbiased estimator for Var(/i;-). Now we have that
Var(\;) = Var(E(\:|\)) 4+ E(Var(Ai|\;)) = Var(\;) + E (2)
We calculate

(0.2982456 — 0.2398258)2 + (0 — 0.2398258)2 + (0.5121212 — 0.2398258)2 + (0.1489362 — 0.2398258)2

by
Var(\;) 3

= 0.04777833

We also calculate

A 1 £0.2398258  0.2398258  0.2398258  0.2398258

n; 114 140 330 47

> = 0.00241154949013

The VHM is therefore 0.04777833 — 0.00241154949013 = 0.0453667805099.
The credibility for the four policyholders is therefore given in the following table:
Policyholder Exposure Credibility

1 114 5t — = 0.955683331831
114+Ww

2 140 ———F3o505s— = 0.963614105621
140+<WW

3 330  —5%aemsss— = 0.984233255261
330+W

4 37 ——ormessss— — 0.874986334869

) 37+ 5.0453667305099 o ]
To balance the estimates, we set the book premium to equal the credibility-weighted mean

0.955683331831 x 0.2982456 + 0.963614105621 x 0 + 0.984233255261 x 0.5121212 + 0.874986334869 x 0.1489362
0.955683331831 + 0.963614105621 + 0.984233255261 + 0.874986334869

= 0.24332091069¢

The credibility estimate for A3 is therefore 0.984233255261 x0.5121212+4-0.015766744739 x 0.243320910699
0.507883094453. This means the expected number of claims for policyholder 3 is 0.507883094453 x 64
32.504518045.
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[76] For an exponential distribution, the variance is the square of the mean, so the estimate for EPV is
the average square of the hypothetical means. This is the square of the mean claim amount plus the variance
of hypothetical means. We have that the variance of observed means is 8322. This is the VHM plus the
EPV. Since EPV = VHM + 6892, we have that 2VHM + 6892 = 8322, so VHM = 8322689 — 1087515 and
EPV = 108751.5 + 6892 = 583472.5. The credibility of one year’s experience is therefore Z = !

15834725 —
0.157104492188. The premium for this individual is therefore 0.157104492188 x 462 + 0.842895507812 % 689 —
$653.34.
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IRLRPCI 4 Loss Reserving

4.6 Loss Reserving Methods
i

We use the following code:

Run. Off<—read . table (” RunOffl. txt”)

Cum.Run. Off<—t (apply (Run. Off ;1 ,cumsum))

### Take cumulative sums along rows.

### apply automatically returns its answers as columns, so we need to transpose

### Development factors for each development year and accident year
### Check these for outliers.
Cum.Run. Off[, —1]/Cum.Run. Off[, —6]

Cum.Cum. Payments<—apply (Cum. Run. Off ,2 , cumsum )

### In R matrices are vectors index by row then column,
##H# so we can extract the antidiagonal elements by index
Cum.Cum. Payments[1+seq_-len (5)*5]

### Mean development factors are obtained by dividing adjacent
### elements in this table.
Dev.Factor<—Cum.Cum. Payments[6+seq_-len (5)*5] /Cum.Cum. Payments|[seq-len (5) 5]

### To get the ultimate Development factors we can use cumulative products.
### Reverse the list so it is indexed by starting DY.
Ultimate .Dev.Factor<—rev (cumprod(rev (Dev. Factor)))

### Latest Cumulative payments
Cum.Run. Off[1+seq_len (5)*5]

### Expected Ultimate Losses
rev (Cum.Run. Off[14+seq_len (5)*5]* Ultimate . Dev. Factor)

### Expected Outstanding Claims
rev (Cum.Run. Off[14+seq_len (5)*5]*( Ultimate . Dev. Factor —1))
sum (Cum.Run. Off[1+seq_len (5)*5]*( Ultimate . Dev. Factor —1))

### Can also break down by year:

### Use matrix multiplication of rows.

### This fills estimates for known values, which need to be ignored.

### Reverse the payments made vector to put the table in the correct order.

rev (Cum.Run. Off[14+seq_len (5)*5]* Ultimate . Dev. Factor)%«%t (¢ (1/Ultimate . Dev. Factor ,1))

### Note the complete AYO has been removed.
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### To get expected future payments, take differences between consecutive years:

rev (Cum.Run. Off[14+seq_len (5)*5]* Ultimate . Dev. Factor)%«%
t(c(1/Ultimate.Dev.Factor[—1],1) —1/Ultimate .Dev. Factor)

This gives the following table of (rounded) expected future payments:

Accident Development Year

Year 1 2 3 4 5
1 453
2 1531 473
3 2068 1609 497
4 2804 2178 1694 523
5 2631 2886 2242 1744 539
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We use the following code to adjust the historical data to Year 5 costs:

### Calculate an inflation factor to year 5 from each previous year.
Inflation .Factor<—rev (cumprod(rev(c(1.02,1.04,1.07,1.05,1.01,1))))

### Calculate the year of each entry
Year<—(0:5)%+%t (rep (1,6))+rep(1,6)%*%t (0:5)

### Use these as indices in the Inflation Factor vector to get

### inflation factors for each element of the table. Since year
### numbering starts at 0, but vector indices start at 1, we need to
##### add 1 to get the correct factor.

Inflation .Factor[Year+1]

### This lookup operation creates a vector, so we need to turn it back
### into a matrix.

matrix (Inflation .Factor [Year+1],6,6)

###+ Adjust payments. Do this before calculating cumulative payments.

Adj.Run. Off<-Run. Offxmatrix (Inflation .Factor [ Year+1],6,6)

Now we can use the method from Question[77)to predict future losses, getting the following future payments
(assuming no inflation).

Accident Development Year

Year 1 2 3 4 5
1 435
2 1441 434
3 1934 1446 436
4 2646 1958 1464 441

5 2535 2659 1968 1471 443
If we have expected future inflation rates, we can also adjust payments by these rates in a similar fashion.

87



)

We use the following code to calculate correlations:

### Calculate a matrix of annual development factors
Annual.Dev. Factors<Cum.Run. Off[, —1]/Cum.Run. Off [, —6]

### calculate pairwise correlations for each pair of years.
### We exclude NAs from the correlation calculations
cor (Annual.Dev.Factors[,seq_-len (3)],use="pairwise.complete.obs”)

The only meaningful correlations are from pairs of development years that have at least 3 observations
— i.e. Years 0-1, 1-2, and 2-3. We get the correlation between Years 0-1 and 1-2 is —0.57937360 and the
correlation between Years 1-2 and 2-3 is 0.00691387. Under a normal assumption, we can perform a t-test. For
comparing factors 0-1 and 1-2, the test statistic 7} = —0.57937360+/4 — 21 — 0.579373602 = —0.66782765681
should follow a ¢ distribution with 4 — 2 = 2 degrees of freedom. The p-value is 0.5729913. For comparing
factors 01 and 1-2, the test statistic 75 = 0.00691387+/3 — 21 — 0.006913872 = 0.00691370475101 should
follow a t distribution with 3 — 2 = 1 degrees of freedom. The p-value is 0.9955987. Thus, we do not have any
evidence for correlation of development factors.

The Spearman coefficients are —1 and 0.5. We get Ty = 0.5v/3 — 21 — 0.52 = 0.433012701892, which is not
significant. For T7, the ¢ statistic becomes infinite, so does not give a reliable p-value. We can get the correct
p-value by considering permutations — there are two possible orders that achieve a Spearman correlation
coefficient of +1, out of a total of 12 possible orders, so the p-value is 1—12 = 0.083333333333.

We can test for calendar year effects by ranking within each column.

### We first rank each column.
DFRanks<—apply (Annual.Dev. Factors ,2 ,rank)

### Note that this ranks NAs last, so the NA elements get false ranks.

### rescale ranks by dividing by number of elements

### plus 1 so that the median is 0.5

DFRanks. scaled <~DFRanks/(rep (1,6)%*%t (colSums (! is .na(Annual.Dev. Factors)))+1)
### We can arrange by Calendar years by changing the dimensions of the matrix:

Cal.Year .DF.Ranks<—matrix (DFRanks. scaled ,5,6)

### Also note that the false ranks are all > 1 after rescaling.
### So we can replace them by NA

Cal.Year .DF.Ranks|[Cal. Year .DF. Ranks>=1]<—NA
### Collect Binomial statistics for simple test:

cbind (rowSums(Cal. Year .DF.Ranks <0.5,na.rm=TRUE) ,
rowSums (! is .na(Cal.Year .DF.Ranks)))
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### A more powerful test would calculate the average of these rescaled
### ranks by calendar year. However, calculating significance is
### a slight challenge.
cbind (rowMeans (Cal . Year .DF. Ranks , na.rm=TRUE) ,
rowSums (! is .na(Cal.Year .DF.Ranks)))

We get the following:
Calendar Year No. of Development Factors Average Rank Number of factors below median

1 1 0.1666667 1
2 2 0.5666667 1
3 3 0.6444444 0
4 4 0.4458333 2
5 ) 0.4966667 2

For the average ranks, the rank in development year i, which has I — ¢ observations has mean 0.5, but the

variance depends on the number of observations, I — i¢. With n + 1 observations, the variance of the scaled

ranks is %niﬁ We can therefore rescale the ranks by the standard deviations to get unit variance, and the

average rank should have variance equal to the number of development factors.
This gives the following
Calendar Year No. of Development Factors Sum of Standardised Ranks

1 1 —1.41421356
2 2 0.63453401
3 3 1.86142716
4 4 —1.11689592
) ) 0.03514831

We see that none of these tests can reject the null hypothesis, even without correction for multiple testing.
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We use the following code:

library (dplyr) # for %%
library (reshape) # for melt — turns matrix into table
library (ggplot2) # for the plotting

ggplot ((Cum. Adj.Run. Off[, —1]/(Cum. Adj.Run. Off[,1]%+%t (rep(1,5))))%>% melt (),
mapping=aes (x=as.numeric (X2), # development year
y=value , # CDF
colour=as.factor (X1—1)))+ # Accident year
geom _line ()+
scale_x_continuous (name="Development Year”)+
scale_y_continuous (name="Cumulative Development Factor”)+
scale_colour_discrete (name="Accident Year”)

This produces the following diagnostic plot.

Accident Year
0

Cumulative Development Factor
~

i 2 4 5

3
Development Year

We see that Accident Year 0 has slightly higher adjusted cumulative development factors, but there is not
a general trend, and the difference is small enough to be random fluctuation.
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First we calculate the expected Loss payments. Using the loss development factors, the proportion of
payments made in each year is:
Cumulative 0.1995275  0.4092979  0.6393469  0.8180704  0.9570632 1

Proportion  0.19952752  0.20977035 0.23004908 0.17872344 0.13899278 0.04293684
This leads to expected payments:

Accident Expected Development Year

Year loss 0 1 2 3 4 5
1 9805 421
2 10214 1420 439
3 10724 1917 1491 460
4 11640 2678 2080 1618 500
5 11826 2481 2721 2114 1644 508

We can calculate these using the code:

### Calculate gamma_j

gamma<—c (1/rev (cumprod (rev (Dev.Factor))),1)—c(0,1/rev(cumprod(rev(Dev.Factor))))

### Earned premiums
EP<-¢(11980,12105,12610,13240,14370,14600)

### Earned premium x Expected Loss Ratio % Proportion of claims paid
(EP%0.81)%*%t (gamma)
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We first convert the run-off table to the following cumulative per-premium run-off table.

Accident Development Year

Year 0 1 2 3 4 5

0 0.1674457 0.3425710 0.5363105 0.6861436 0.8019199  0.8378965
1 0.1738125 0.3558860 0.5556382 0.7120198  0.8337877

2 0.1741475 0.3582078 0.5590801 0.7144330

3 0.1747734  0.3580060 0.5588369

4 0.1687543 0.3471120

5 0.1714384
Using the same method as Question we get the following estimated cumulative LDFs and ultimate
losses.

Accident Year i C; 5 Br_; VI—j

0 0.8378965  1.0000000 0.04293684
1 0.8711940 0.9570632 0.13899278
2 0.8733148 0.8180704 0.17872344
3 0.8740745 0.6393469 0.23004908
4 0.8480671  0.4092979 0.20977035

) 0.8592216  0.1995275 0.19952752

This gives ¥ = 1.111976 x 107%, C' = 0.8608603 and & = 0.0002881496. These result in the following
credibility estimates:

Accident Year Credibility

0 0.9961558
1 0.9959840
2 0.9953049
3 0.9940003
4 0.9906597
5 0.9810262

The credibility weighted average ultimate losses are therefore 0.8606363, and the Biihlmann-Straub estimate
for Ultimate losses in each year is

1 C’ZB§ Estimated per-premium Outstanding Claims Estimated outstanding claims
0 0.8379839 0.0000000 0.0000
1 0.8711516 0.0374045 452.7814
2 0.8732553 0.1588710 2003.3633
3 0.8739939 0.3152086 4173.3613
4 0.8481845 0.5010244 7199.7202
5 0.8592485 0.6878047 10041.9493

The total estimated outstanding claims are therefore 23871.18.
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SN1 3.5 The Poisson Model

@ For given p; and v;, the log-likelihood is

Wpy) = Y Xijlog(pivy) — piv;
iti<I

Setting the derivative with respect to u; to zero gives
X
>, om0

j<i—i 7t
SO

Zl zX Cir—i
I—1 = B . (]‘)
Zj:o'}/j I—i

Setting the derivative with respect to y; to zero gives

Z Xii.’j—ﬂizo

fi =

i<I—j 73
SO I
i Xiy 5
V= T—j (2)
Zizo Hi
. . J . Yo Cigey
The MLE satisfies these equations and 3 _5_,7; = 1. We will now prove that 8;_; = s by
induction on j. We will need the following lemma:
Lemma 2. If% =3 and A#C, then gig = %.
Proof.
A+C  A+42 A L DPY__A B+D A
B+D B+D B+D B) B+D B B
O
For the base step, when j = 0, this is immediate from the fact that ZJ v; = 1. Suppose we have proved
I—J+j
Br—j = % We want to prove the same results for j + 1.
i=0 i
We have

I=J+j I—J+j I—J+j
ﬂJ 'l_ﬂ.] g ._220 CZJJ ZZO XZJ*j_Z C
—3—1 = —J -J =

iz~ Cig—j-1
I—J+j - I—J+j I—J+j
Zi:() i Ei:o 273 ZZ‘:() 1223
) _ Cr_ytjt+1,0-j-1
Furthermore, from , we have f;_;_1 = a0 by the lemma,

I-J+j T—J4j+1
3 Cregyjti,g—j—1+>0 " Cig—j—1 D% Cig—j—1
J—j-1= I— J-I—j - I—J+j+1
BI—J+j+1 + Z i Zizo Hi

as required.
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From this, we have

SIiX ,») .
< i=0 I—j
¥ ( S ) D Xy

B (%) iz Ciy

SO

I—j I—j I—j I—j
Bimv _q 2imo Xig _ 2izg Cig = 2izg Xig _ 2izg Cig—
5 I—j - —j - T—j
Bj >ico Ci >ico Cij >ico Cij
which is exactly the chain-ladder estimate.
. . .5 SIZiC 5 ST X\ A A .
The chain-ladder estimate is f;_1 = =£Z252—F; = (1 — ¢> Bj, and B; = 1. Under the Poisson

023 Ci 023 Cig .
I—j o . I—j 50 A 2 I—j
model, ;77 X;; is Poisson with mean v; >";~{ p;, so Var(8;|8;-1,Ci j—1) = W’yj Soii
=0 KW
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34

(a) We use the following code to calculate &%

### Annual development factors
fij < Cum.Run. Off[, —1]/Cum.Run. Off[, —6]

### Use the rowMeans function to automatically adjust for NA values,

### then correct the scale factors.

sigmahat<—rowMeans (Cum.Run. Off [, —6]*( fij —rep(1,6)%*%t (Dev.Factor))"2,na.rm=TRUE)
(6—seq-len(6))/(5—seq_len (6))

##HE Use Mack’s suggestion for estimating sigma_{J—1}
sigmahat[5]<—min(c(sigmahat [3:4] ,sigmahat[4]"2/sigmahat[3]))

This gives the following estimates:

o
0.03035242
0.02272968
0.04781808
0.02552981
0.01363023

=W N O,

—
£

The process variance can be approximated by

~2

g7 ~
AQJA :Ci,-]

i fi Cij i=1-i f B

J-1
Var(C;, 5|Ci 1—i) =~ éiQ,J Z
j=1-

We calculate these using the following code:
### calculate the sums
cumsum (rev (sigmahat[—6]* Ultimate . Dev. Factor /Dev. Factor "2)))

### Multiply by estimated ultimate losses
### Remove the first row as those are final.
cumsum (rev (sigmahat[—6]* Ultimate . Dev. Factor /Dev. Factor "2)))*Est. Ult. Losses[—1]

This gives the following values:

~2 N ~
Accident Year % Z;‘]:in fj—za Cig Var(C; 5|Ci.1—:)
i Pj
0.01304499 0.8711940 0.01136472
0.03584616 0.8733148 0.03130498

1
2
3 0.08152840 0.8740745 0.07126189
4
5

0.10428773 0.8480671  0.08844299
0.14043847 0.8592216 0.12066777
Total 0.3230423
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(c)

The expected squared estimation errors are given by

I g2
E <<éi,J - E(Ci,j|DI))2> ~ CA’ZQJ Z » 2J
j=1-i fj Sj

We therefore use the following code to compute the mean squared estimation errors:

### Easiest to compute S by taking total sums then subtracting anti—diagonal.
S<—colSums (Cum.Run. Off ,na.rm=TRUE)—Cum.Run. Off[1+5xseq_len (6)]

### MSE of hat{C}_{i,J}
Est.Ult. Losses[—1]"2xcumsum (rev (sigmahat [ —6]/(Dev.Factor "2«S[—6])))

This gives the following values:

. 2
Accident Year i E <<Ci7J - IE(C’7;7J-|D1)> )

9.863391 x 10~7
1.835985 x 106
2.943788 x 106
3.150395 x 106
3.715945 x 106

T W N =

J ~2

E ((ézf - E(Ci,j|D1)) (éi/,J - E(Ci’,j|Dl)>> ~ Ci 10y Z —
i=1—Gnir) f5 5;

where S; = Y1207 ¢y
We therefore use the following code to compute the mean squared estimation errors:

### Covariance of estimation errors
CovarianceMSE<—(Est . Ult . Losses[—1]%*%t (Est . Ult . Losses [ —1]))*
pmax (
rev (cumsum (rev (sigmahat[—6]/(Dev. Factor "2xS[—6]))))%*%t (rep (1,5)),
rep(1,5)%*%t (rev (cumsum (rev (sigmahat [ —6]/(Dev. Factor "2«S[—6]))))))

#4#H+ Total estimation error.

sum ( CovarianceMSE)+sum (Est . Ult . Losses [ —1]"2xcumsum (rev (sigmahat[—6]/(Dev. Factor "2xS[—6]))))

This gives the following values:

i

1

2

J
3

4

5

T W N =

3.820222 x 10~6
3.829522 x 10~6
3.832853 x 1076
3.718809 x 106
3.767722 x 106

3.829522 x 10~6
3.340768 x 1076
3.343674 x 1076
3.244185 x 1076
3.286856 x 1076

3.832853 x 10~ °
3.343674 x 106
2.943788 x 10~6
2.856197 x 1076
2.893765 x 106

3.718809 x 10~°
3.244185 x 106
2.856197 x 10~6
1.731361 x 1076
1.754134 x 106

3.767722 x 1076
3.286856 x 10~°
2.893765 x 10~6
1.754134 x 10~
9.594158 x 107
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The mean squared estimation error in the total outstanding claims is therefore 7.748614 x 1075,

The total MSE is obtained by adding this to the process variance, which gives 7.748614x 107°+0.3230423 =
0.32311978614.
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We use the following code

library (reshape)

Run. Off. Matrix<—as . matrix (Run. Off)

rownames (Run. Off . Matrix)<—paste ("V” ,seq_len (6),sep="")

rownames (Run. Off . Matrix)<—paste ("R” ,seq_-len (6) ,sep="")

ODP<—glm ( value ~. ,data=melt (Run. Off. Matrix ) , family=quasipoisson (link=log))

The fitted parameters are
Parameter Estimate Standard Error
(Intercept)  7.602330 0.002848

1 0.049350 0.002943
142 0.092653 0.003088
3 0.142275 0.003321
i 0.193969 0.003832
s 0.222915 0.005014
96t 0.050061 0.002744
Y2 0.142341 0.002947
¥3 —0.110113  0.003536
V4 —0.361530  0.004554
s —1.536222 0.010345

These are log coefficients, and are relative to pg and g respectively, so we need to rescale to ensure
Z]

. ’y = ]_'

=0 17
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30|

(a) We use the following code:

Run. Off. Reported<—read . table (” ClaimsReportedRunOff. txt”)
Run. Off. Settled <—read . table (” ClaimsSettledRunOff. txt”)
Aggregate . Payments<-read . table (” AggregateSettledPaymentsRunOff. txt”)

Cum. Reported<—t (apply (Run. Off . Reported ,1 ,cumsum))

Cum.Cum. Reported<—apply (Cum. Reported ,2 ,cumsum )

Reported .DF<—(Cum.Cum. Reported [, —1]/Cum.Cum. Reported [, —6])[5*seq_len (5)]
Est.Ultimate.Reported<—c (1,cumprod(rev(Reported .DF)))*Cum. Reported [rev(1+5xseq_len (6))]
Est .Cum. Reported<-Est . Ultimate . Reported%+«%t (rev (1/c(1,cumprod(rev (Reported .DF)))))

Cum. Settled <—t (apply (Run. Off. Settled ,1,cumsum))

Cum.Cum. Settled <—apply (Cum. Settled ,2 ,cumsum)

Settled .DF<—(Cum.Cum. Settled [, —1]/Cum.Cum. Settled [, —6])[5*seq_-len (5)]
beta<—c (rev (cumprod (rev(1/Settled .DF))),1)

gamma<—beta—c (0, beta[—6])

Projected . Settled < Est. Ultimate . Reported%%t (gamma)

Projected . Settled . Future<—Projected . Settled
Projected. Settled . Future[1,1:6] < —NA

]
Projected. Settled .Future[2,1:5] < —NA
Projected. Settled . Future[3,1:4] < —NA
Projected. Settled . Future[4,1:3] <—NA
Projected. Settled . Future[5,1:2] <—NA
Projected. Settled . Future[6,1] <—NA

Projected . Past.Settled <-matrix (rowMeans (cbind (
as.vector (as.matrix (Run. Off. Settled)),
as.vector (as. matrix (Projected . Settled . Future))) ,na.rm=ITRUE) ,6 ,6)

This produces the following projection for settlements.

Accident Development Year

Year 1 2 3 4 5
1 4.025000
2 22.22409  3.875000
3 33.81494 26.48486 4.617910
4 33.75849 33.16157 25.97312 4.528682
5 59.69948 37.75756 37.08992 29.04992 5.065155

(b) We use the code:

Ave.Settlement . Ammount<—colMeans ( Aggregate . Payments/Run. Off. Settled ,na.rm=TRUE)
Exp.Agg.Payments<—Projected . Settled . Futurex(rep(1,6)%+%t (Ave. Settlement . Ammount) )
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sum (Exp. Agg. Payments , na . rm=TRUE)

To project the following aggregate claims:

Accident Development Year

Year 1 2 3 4 5
1 22502.77
2 99324.95 21664.16
3 124618.7 118367.41 25817.58
4 75307.73 122210.8 116080.29 25318.73
5 70205.17 84228.77 136688.0 129831.30 28318.02
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IRLRPCI 3 Ratemaking
3.9 Rate Changes

For the base class, the loss ratio is % = 0.9512195. We want to change the current differentials to
match this loss ratio. For example, for the low risk class, at a differential of 0.74, we get a loss ratio of
1100

1300 = 0.8461538. That is, if the premium were the same as for the base class, the loss ratio would be
_1100_

(10) 0.8461538 x0.74 = 0.6261538. To get this loss ratio to equal 0.9512195, we would need the new differential
0.74
to be the solution to

(0.74 x 152) 3900

d T 4100
o 1100 4100
d =074 x ooe X oo = 0.6582643

Similarly for the high risk class, the new differential is

1400 4100

—— = 1.343013

1.46 x —— X
1600 3900
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Loss Ratio Method:

The new differentials are Low risk 0.74 x

X 5850 X 7500

Female : 0.88 X g550 X &350

The permissible loss ratio is 1 — 0.2 = 80%. At the current premium, the loss ratio is
so if they used the same relative changes to premiums, the premiums would change by a factor of % =

1900 x 9100
2000 “* 8000

= 0.8812051.

= 0.7996625 High risk 1.46 X

1.059028. However, we want to balance back by dividing by the off-balance factor which is

0.7997
T99T % 900 + 1 x 4700 +

1.1575
1575 5 1900 +

0.7997
0.74

0.8812
0.88

x 1100 +

0.8812 1.1575
bss < 4400 + 5775

X0

12200
14400

08812 140

2300 _
£300 X 91008000 = 1.157492

= 0.8472222,

We therefore multiply the base rate by

900 + 4700 + 1900 + 1100 + 4400 + 1400

1.059028
0.9643522

The rates for other classes are therefore shown in the following table

Male Female
Low 40.66 35.83
Medium  50.85 44.81
High 58.85 51.86

We now compare the calculated differentials with the experience:

Calculated Differential Experience
Male Female Male Female
Differential 1 0.8812051
Low 0.7996625 | 0.7996625 0.7046667 0.9896748  0.5768390
Medium 1 1.0000000 0.8812051 1.0000000 0.8941463
High 1.157492 1.1574920 1.0199879 1.0570475 1.1572153

Loss cost method:

To calculate the new differentials, we calculate the loss cost per unit of exposure for each class.

= 0.9643522

= 1.123013. The new base rate is 1.098176 x 46.30 = $50.85.

For

example for female policyholders, the total loss was $5,850, and there were $1,100 of earned premiums at a

rate of 46.30 x 0.74 x 0.88, which corresponds to m = 36.48357 units of exposure. Similarly, the
number of units of exposure for the other classes were:
Male Female total
Low 26.2682  36.4836  62.7517
Medium 101.5119 107.9914  209.5032
High 28.1073  23.5349  51.6422
total 155.8874  168.0098
This gives the loss costs as
Class Loss cost
Low 30.27804
Medium  38.18557
High 44.53722
Male 40.73453
Female 34.81940
This gives the following:
Calculated Differential Experience
Male Female Male Female
Differential 1 0.8547883
Low 0.7929184 | 0.7929184 0.6777774 0.9896748  0.5768390
Medium 1 1.0000000 0.8547883 1.0000000 0.8941463
High 1.166336 | 1.1663360 0.9969704 1.0570475 1.1572153
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For these differentials and the exposures calculated above, the total earned premiums would be 295.624
times the base rate. The expected total losses are $12,200, so the new base rate is % = $51.59, and
the new premiums are

Male Female
Low 40.90 34.96
Medium 51.59 44.09
High 60.17 51.43
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89
If we balance back to the new differentials, the adjusted earned premiums are:

Female
Healthy Unhealthy Total
Young 3600 1800 x 127 =1896.64 | 5496.64
Old 7300 x 193 = 6838.51 6900 x 193 x %2 =6810.84 | 13649.35
Total 10438.51 8707.49 | 19145.99
Male
Healthy Unhealthy Total
Young 3200 x 715 = 3091.53 1700 x 11 x 57 =1730.55 | 4822.08
Old 5300 x 44 x % =4796.64 5800 x 114 x % x % = 5530.99 | 10327.63
Total 7888.17 7261.54 | 15149.71

Thus the adjusted total earned premiums are $34295.70, which results in a loss ratio of 0.845587118544, so
the base premium should be adjusted by a factor W = 1.05698389818.
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