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Toby Kenney

Practice Midterm Examination

Model Solutions

This Sample examination has more questions than the actual midterm, in order to cover a wider range of questions.
Estimated times are provided after each question to help your preparation.

Here are some values of the Gamma distribution function with θ = 1 that may be needed for this examination:
x α F (x)
245 255 0.2697208(
7.5
12

)3 4
3 0.1117140(

9.5
12

)3 4
3 0.2507382

2.5 1 0.917915
2.5 2 0.7127025
2.5 3 0.4561869
2.5 4 0.2424239
0.3542 3 0.005692012
5.6458 3 0.9202284

1. An insurer is assessing a model. Under the model, a certain statistic X should follow a gamma distribution with
parameters θ1 and α = 3, and another statistic Y should follow a Weibull distribution with τ = 2 and scale parameter

θ2. They compute the statistic X
θ1

+
(
Y
θ2

)2
. What is the probability that this statistic exceeds 7? [10 mins]

X
θ1

should follow a gamma distribution with θ = 1 and α = 3. The density function is therefore f(x) = x2e−x

2 . The

probability that X
θ1

> 7 is therefore 0.02963616. Y
θ2

should follow a Weibull distribution with θ = 1 and τ = 2.

The probability that the square of this exceeds 7− x is therefore e−(
√
7−x)

2

. Thus, the probability that X
θ1

+
(
Y
θ2

)2
exceeds 7 is

0.02963616+

∫ 7

0

x2e−x

2
e−(7−x) dx = 0.02963616+

e−7

2

∫ 7

0

x2 dx = 0.02963616+
e−7

2

[
x3

3

]7
0

= 0.02963616+
73

6
e−7 = 0.0817654123643

2. An insurer models claims as following a Pareto distribution with θ = 2000 and α varying between individuals. They
model α = 2 + 2A where A follows a gamma distribution with α = 3 and θ = 1. What is the VaR at the 0.95 level
of the loss distribution for a random individual?

(i) 1243

(ii) 8445

(iii) 9290

(iv) 15919
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For an individual with A = a, the probability that the loss exceeds x is S(x) =
(

2000
2000+x

)2+2a

. Let p = 2000
2000+x . The

overall probability of a loss exceeding x is E
(
p2+2A

)
= p2E

(
p2A
)
. For the gamma distribution, we have

E
(
p2A
)

=
1

2

∫ ∞
0

a2e−ae2 log(p)a da

=
1

2

∫ ∞
0

a2e−(1−2 log(p))a da

= (1− 2 log(p))−3

Thus, we need to solve p2(1− 2 log(p))−3 = 0.05.

We try the values given in the question:

x p p2(1− 2 log(p))3

(i) 1243 0.6167129 0.05000
(ii) 8445 0.1914792 0.00046
(iii) 9290 0.1771479 0.00035
(iv)15919 0.1116134 0.00008

We see that (i) 1243 is the VaR.

3. An insurance company models aggregate losses following a Pareto distribution with α = 8 and θ = 9600 for x <
$50, 000 and a Pareto distribution with α = 3 for x > $50, 000. The probability that a loss exceeds $50,000 is 0.00001.
The scale parameters of the Pareto distributions are chosen so that the overall density function is continuous. What
is the expected aggregate loss? [15 mins]

Let the scale parameter of the Pareto distribution fo x > $100, 000 be θ. Under the first Pareto distribution, the

probability that a loss is less than $50,000 is 1 −
(

9600
59600

)8
= 0.999999546895, so this Pareto density is scaled by a

factor 0.99999
0.999999546895 = 0.999990453101. Similarly, the second Pareto density is scaled by a factor 0.00001(50000+θ)3

θ3 .

The scaled density of the first Pareto distribution at x = 50000 is given by 0.999990453101 8×96008
(59600)9

= 6.08190129348×

10−11 and the scaled density of the second Pareto distribution is given by 0.00001(100000+θ)3

θ3
3θ3

(θ+100000)4 = 0.00003
θ+50000 .

For the spliced distribution to be continuous, these must be equal. That is

0.00003

θ + 50000
= 6.08190129348× 10−11

θ + 50000 =
0.00003

6.08190129348× 10−11

= 493266.801817

θ = 443266.801817

The conditional expectation of X|X > 50000 is(
50000 + θ

θ

)3 ∫ ∞
50000

(
θ

θ + x

)3

dx = (50000+θ)3
∫ ∞
50000+θ

u−3 du =
(50000 + θ)

2
=

493266.801817

2
= 246633.400909
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The conditional expectation of X|X < 50000 is

1

0.999999546895

∫ 50000

0

8× 96008x

(9600 + x)9
dx = 8.00000362484× 96008

∫ 50000

0

(9600 + x)−8 − 9600(9600 + x)−9 dx

= 8.00000362484× 96008
∫ 59600

9600

u−8 − 9600u−9 dx

= 8.00000362484× 96008
[
9600

u−8

8
− u−7

7

]59600
9600

= 8.00000362484× 9600

(
1

56
+

96008

8× 596008
− 96007

7× 596007

)
= 1371.40267965

The overall expectation is therefore

0.99999× 1371.40267965 + 0.00001× 246633.400909 = $1, 373.86

4. An insurance company has the following data on its policies:

Policy limit Losses Limited to
20,000 50,000 100,000 500,000

20,000 1,400,000
50,000 7,540,000 8,010,000

100,000 22,600,000 24,100,000 28,700,000
500,000 5,900,000 6,220,000 6,650,000 6,920,000

Use this data to calculate the ILF from $20,000 to $500,000 using

(a) The direct ILF estimate. [5 mins]

The direct ILF estimate is 6920000
5900000 = 1.17288135593.

(b) The incremental method. [5 mins]

Using the incremental method the ILFs are:

$20,000–$50,000 8010000+24100000+6220000
7540000+22600000+5900000 = 1.06354051054

$50,000–$100,000 28700000+6650000
24100000+6220000 = 1.16589709763

$100,000–$500,000 6920000
6650000 = 1.04060150376

So the ILF is 1.06354051054× 1.16589709763× 1.04060150376 = 1.29032379813.

5. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 100,000. It
has the following data on a set of 1,200 claims from policies with limit $1,000,000.

Losses Limited to 50,000 100,000 500,000 1,000,000
Total claimed 16,700,000 20,880,000 27,030,000 32,410,000

Calculate the ILF from $100,000 to $1,000,000. [10 mins]

For limit $100,000, the expected loss amount is 20880000
1200 = 17400, and the risk charge is 174002

100000 = 3027.6. The premium
is therefore 17400 + 3027.6 = 20427.6. For limit $1,000,000, the expected loss amount is 32410000

1200 = 27008.3333333,
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and the risk charge is 27008.33333332

100000 = 7294.50069443, so the premium is 27008.3333333+7294.50069443 = 34302.8340277.
The ILF is therefore 34302.8340277

20427.6 = 1.6792395596.

6. An insurer calculates the ILF on the pure premium from $1,000,000 to $2,000,000 on a particular policy is 1.092. A
reinsurer offers excess-of-loss reinsurance of $1,000,000 over $1,000,000 for a loading of 30%. The original insurer
uses a loading of 20% on policies with limit $1,000,000. If the insurer buys the excess-of-loss reinsurance, what is
the loading on its premium for policies with a limit of $2,000,000? [10 mins]

Let m be the expected loss on the policy with limit $1,000,000. With a 20% loading, the insurer charges 1.2m for the
insurance. The expected payment on the reinsurance is 1.092m−m = 0.092m. With a loading of 30%, the cost of
the reinsurance is 0.092m×1.3 = 0.1196m, so the total cost with a limit of $2,000,000 is 1.2m+0.1196m = 1.3196m,
and the expected payment is 1.092m, so the loading is 1.3196m

1.092m − 1 = 20.842490842%.

7. An insurer models a loss as following a Weibull distribution with τ = 4 and θ = 100. What are the parameters cn
and dn that make the distribution of Mn−dn

cn
converge, where Mn are block maxima of a block of n samples, and what

is the limiting distribution? [15 mins]

As the Weibull distribution is unbounded and has all finite moments, we know that the limiting distribution must
be a Gumbel distribution. The limiting distribution has distribution function given by

− log(H(x)) = lim
n→∞

nS(cnx+ dn)

The survival function of the Weibull distribution is S(x) = e−( x
100 )

4

, so we want to find cn and dn such that

lim
n→∞

ne−( cnx+dn100 )
4

= e−x

For x = 0, this becomes

lim
n→∞

ne−( dn100 )
4

= 1

which will hold if dn = 100 log(n)
1
4 . We now need to select cn so that the limit converges for every x. We see that

if cn is much larger than dn, then the limit will converge to 0 for x > 0. Instead, we will need cn
dn
→ 0. In this case,

we will have (cnx+ dn)4 ≈ d4n + 4d3ncnx. Using this approximation, we need to ensure convergence of

lim
n→∞

ne−
d4n

1004 e−
4d3ncnx

1004 = e−
4d3ncnx

1004

This will happen if 4d3ncn converges to a constant nonzero limit. Thus, we need cn = 25 log(n)−
3
4 . For this value of

cn, we see that the limiting distribution is indeed a Gumbel distribution.

8. An insurer models aggregate daily losses with a distribution in the MDA of a Fréchet distribution with ξ = 0.8. In
the past 100 years, there have been 21 years including daily losses exceeding $500,000, and 9 years including daily
losses exceeding $1,000,000. What is the probability of a daily loss exceeding $2,000,000 during the next year? [10
mins]

We have that M365−d365
c365

follows a Fréchet distribution with ξ = 0.8. The distribution function of this is F (x) =

e−(1+0.8x)−
1

0.8 . We have that P (M365 < 500000) = 0.79 and P (M365 < 1000000) = 0.91. Solving F (x) = 0.83 gives
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x = (− log(0.79))−0.8−1
0.8 = 2.72181880445 and solving F (x) = 0.91 gives x = (− log(0.91))−0.8−1

0.8 = 7.0153512425. Thus,

we have 500000−d365
c365

= 2.72181880445 and 1000000−d365
c365

= 7.0153512425. We solve the equations

2.72181880445c365 + d365 = 500000

7.0153512425c365 + d365 = 1000000

4.29353243805c365 = 500000

c365 = 116454.226727

d365 = 183032.695837

Thus, the probability that the next year includes a daily loss exceeding $2,000,000 is

P (M365 > 2000000) = P

(
M365 − d365

c365
>

2000000− 183032.695837

116454.226727

)
= 1− F (15.6024161186)

= 1− e−(1+0.8×15.6024161186)−
1

0.8

= 0.037969196024

9. A reinsurer offers an excess-of-loss reinsurance contract on a portfolio with attachment point $10,000,000 and no
policy limit. The aggregate loss distribution is estimated to lie in the MDA of a Gumbel distribution. The reinsurer
estimates that the probability of paying a claim is 0.08 and the expected payment on the contract is $4,800. What is
the expected square of the payment on the contract. [10 mins]

Since the distribution is in the MDA of a Gumbel distribution, the excess loss distribution converges to an exponential
distribution. The probability of a payment is 0.08 and the expected payment is $4,800, so the conditional expected
payment given that there is a payment is 4800

0.08 = 60000. The excess loss distribution is exponential with mean β, so
we have β = $60, 000. The expected square of the payment conditional on a payment being made is 2 × 600002 =
7200000000. The expected square of the payment is therefore 0.08× 7200000000 = 576000000.

10. An insurer estimates that the time to completion of a claim comes from a distribution in the MDA of a GEV
distribution with ξ = −1.8. The maximum time to completion is 20 years. They find that 2% of claims are
incomplete after 5 years. Assuming the GPD approximation applies above 5 years, what percentage of claims are
incomplete after 10 years?

Under the GPD approximation, the remaining time to completion after 5 years follows a GPD with ξ = −1.8. The
maximum value is −βξ = 15, which gives β = 1.8× 15 = 27. The probability that a claim that is incomplete after 5

years remains incomplete 5 years later is
(
1− 1.8 5

27

) 1
1.8 = 0.798309914099. Thus, the percentage of claims that are

incomplete after 10 years is 2× 0.798309914099 = 1.597%.

11. An actuary is reviewing a sample of 483,230 observations that she believes comes from the MDA of a Fréchet
distribution. She uses the Hill estimator to estimate ξ. She uses the j = 481000th order statistic as the threshold
for the Hill estimator. Using this threshold, she gets the estimate ξ = 1.45. The order statistics near to this one are
given in the following table:
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j x(j)
480999 594303
481000 599045
481001 615667
481002 630520
481003 649402
481004 682034
481005 684215
481006 690144

What value of ξ would she have calculated if she had used j = 481005? [15 mins]

The Hill estimator is given by

ξ̂ =
1

N − j + 1

N∑
k=j+1

log(x(k))− log(x(j))

Thus, we have that

1

2231

N∑
k=j+1

log(x(k))− log(599045) = 1.45

This gives
483230∑
k=481001

log(x(k)) = 2231(log(599045) + 1.45) = 32914.1482509

We therefore have

483230∑
k=481006

log(x(k)) = 32914.1482509−log(615667)−log(630520)−log(649402)−log(682034)−log(684215) = 32847.2108197

The Hill estimator using j = 481005 as the threshold is therefore

1

2226

483230∑
k=481006

log(x(k))− log(x(481005)) =
32847.2108197

2226
− 13.4360274747 = 1.3201319232

12. Loss amounts follow an exponential distribution with θ = 60, 000. The distribution of the number of losses is given
in the following table:

Number of Losses Probability
0 0.04
1 0.54
2 0.27
3 0.15

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-
of-loss reinsurance on the part of the loss above $150,000. Calculate the expected payment for this excess-of-loss
reinsurance. [15 mins]
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If the number of losses is n, then the aggregate loss follows a gamma distribution with α = n and θ = 60000. The
expected payment on the excess-of-loss insurance is therefore

∫ ∞
150000

(x− 150000)
xn−1e−

x
60000

(n− 1)!60000n
dx

=

∫ ∞
150000

xne−
x

60000

(n− 1)!6000n
dx− 150000

∫ ∞
150000

xn−1e−
x

60000

(n− 1)!60000n
dx

=

∫ ∞
2.5

60000nune−u

n!
du− 150000

∫ ∞
2.5

un−1e−u

(n− 1)!
du

This gives the following expected payments on the excess-of-loss reinsurance:

Number of Losses Probability Expected payment on excess-of-loss product
0 0.04 0 0
1 0.54 60000× 1× 0.2872975− 150000× 0.0820850 = 4925.10 2659.554
2 0.27 60000× 2× 0.5438131− 150000× 0.2872975 = 22162.95 5983.996
3 0.15 60000× 3× 0.7575761− 150000× 0.5438131 = 54791.74 8218.760

The total expected payment on the excess-of-loss reinsurance is therefore 2659.554+5983.996+8218.760 = $16, 862.31.

13. Claim frequency follows a negative binomial distribution with r = 5 and β = 2.9. Claim severity (in thousands) has
the following distribution:

Severity Probability
0 0
1 0.600
2 0.220
3 0.166

Use the recursive method to calculate the exact probability that aggregate claims are at least 4. [15 mins]

For the negative binomial distribution, we have a = β
1+β = 2.9

3.9 and b = (r−1)β
1+β = 4×2.9

3.9 , so the recursive formula

fS(x) =
(p1 − (a+ b)p0)fX(x) +

∑x
i=1

(
a+ bi

x

)
fX(i)fS(x− i)

1− afX(0)

becomes

fS(x) =

x∑
i=1

2.9

3.9

(
1 +

4i

x

)
fX(i)fS(x− i)

Since the severity distribution has no probability at zero, the only way for the aggregate loss to be zero is if the

frequency is zero, the probability of which is
(

1
1+β

)r
= 1

3.9

5
= 0.00110835. We now use the recurrence:
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fS(1) =
2.9

3.9
× 5× 0.600× 0.00110835 = 0.002472473

fS(2) =
2.9

3.9
× (3× 0.600× 0.002472473 + 5× 0.220× 0.00110835) = 0.004215883

fS(3) =
2.9

3.9
×
(

7

3
× 0.600× 0.004215883 +

11

3
× 0.220× 0.002472473 + 5× 0.166× 0.00110835

)
= 0.006555954

The probability that the aggregate payments exceed 4 is therefore 1 − 0.00110835 − 0.002472473 − 0.004215883 −
0.006555954 = 0.9856473.

14. Using an arithmetic distribution (h = 1) to approximate a Weibull distribution with τ = 3 and θ = 12, calculate the
probability that the value is between 3.5 and 8.5, for the approximation using:

(a) The method of rounding. [10 mins]

The method of rounding preserves this probability, since it assigns all values between 3.5 and 4.5 to 4, etc. Therefore

this probability is e−( 3.5
12 )

3

− e−( 8.5
12 )

3

= 0.2745978.

(b) The method of local moment matching, matching 1 moment on each interval. [Γ
(
4
3

)
= 0.8929795.] [15 mins]

Using local moment matching, the probabilities of the intervals [4, 5], [5, 6], [6, 7] and [7, 8] are preserved, so the

probability of these intervals is e−( 4
12 )

3

− e−( 8
12 )

3

= 0.240929357799

For the interval [3, 4], the probability of this interval is e−( 3
12 )

3

− e−( 4
12 )

3

= 0.020855992704 while the conditional
mean times this probability is

∫ 4

3

x

(
3x2

123
e−( x

12 )
3
)
dx =

∫ ( 4
12 )

3

( 3
12 )

3
12 3
√
ue−u du

= 12

∫ 1
27

1
64

u
1
3 e−u du

= 12Γ

(
4

3

)
(SGamma

(
1

64
, α =

4

3

)
− SGamma

(
1

27
, α =

4

3

)
)

= 0.07394568

We are now trying to solve for p3 and p4 such that

p3 + p4 = 0.020855992704

4p3 + 4p4 = 0.07394568

p4 = 0.07394568− 3× 0.020855992704 = 0.011377701888

8



For the interval [8, 9], the probability of this interval is e−( 8
12 )

3

− e−( 9
12 )

3

= 0.087751067934, while the conditional
mean times this probability is

12Γ

(
4

3

)
(SGamma

(
8

27
, α =

4

3

)
− SGamma

(
27

64
, α =

4

3

)
) = 0.7466863

p8 + p9 = 0.087751067934

8p8 + 9p9 = 0.7466863

p8 = 9× 0.087751067934− 0.7466863 = 0.043073311406

So the probability of the interval [3.5, 8.5] is therefore 0.240929357799 + 0.011377701888 + 0.043073311406 =
0.295380371093.

15. An insurance company collects a sample of 25 past claims, and attempts to fit a Pareto distribution to the claims.
Based on experience with other claims, the company believes that a Pareto distribution with α = 3.5 and θ =
4, 600 may be appropriate to model these claims. It constructs the following p-p plot to compare the sample to this
distribution:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fn(x)

F
*(

x)

(a) How many of the points in their sample were less than 1,200? [5 mins.]

We have

F ∗(1200) = 1−
(

46

58

)3.5

= 0.5557224

so we look for the point on the graph with F ∗(x) = 0.5557224.
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We see that the corresponding value of Fn(x) is 0.56. (The values of Fn(x) are in increments of 0.04, since there are
25 data points. The value corresponding to F ∗(x) is one increment before 0.6, so is 0.56).

(b) Which of the following statements best describes the fit of the Pareto distribution to the data: [5 mins.]

(i) The Pareto distribution assigns too much probability to high values and too little probability to low values.

(ii) The Pareto distribution assigns too much probability to low values and too little probability to high values.

(iii) The Pareto distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Pareto distribution assigns too much probability to central values and too little probability to tail values.

We see that there are 8 data points with F ∗(x) < 0.1 approximately. The expected number is 2.5. There are 7 data
points with F (x) > 0.9. Again, the expected number is 2.5. The Pareto distribution has therefore underestimated the
probabilities of these tail regions, and overestimated the probability of the region in between. Therefore, statement
(iv) best describes the fit.

16. An insurance company collects a sample of 20 claims. Based on previous experience, it believes these claims might
follow a Weibull distribution with τ = 0.6 and a known value of θ. To test this, it obtains a plot of D(x).
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(a) Which of the following is the value of θ used in the plot: [5 mins.]

(i) 800

(ii) 1,100

(iii) 2,200

(iv) 3,500

The data points in the sample correspond to vertical line segments on the plot. We see for example, that there are
3 data points above 6000, so F20(6000) = 17

20 = 0.85. Reading from the graph, we get that D(6000) ≈ −0.09. This
means F ∗(6000) = 0.85− (−0.09) = 0.94. This gives:

1− e−( 6000
θ )

0.6

= 0.94(
6000

θ

)0.6

= − log(0.06)

6000

θ
= (− log(0.06))

1
0.6

θ =
6000

(− log(0.06))
1

0.6

= 1070.112

This is clearly closest to (ii), so (ii) is the value of θ used. (The difference between this answer and the 1,100 is
because we only have limited accuracy reading the graph.)

[We can find the value of θ by reading off the value of D(x) for any X on the graph. If it is difficult to count the
number of vertical line segments, we could compare D(x1) and D(x2) for values of x1 and x2 with no vertical line
segments in between. For example, we can read the value D(4200) ≈ −0.04, which leads us to solve

F ∗(6000)− F ∗(4200) = 0.05
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We can try the values given to see which is closer to the solution.]

(b) Which of the following statements best describes the fit of the Weibull distribution to the data: [5 mins.]

(i) The Weibull distribution assigns too much probability to high values and too little probability to low values.

(ii) The Weibull distribution assigns too much probability to low values and too little probability to high values.

(iii) The Weibull distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Weibull distribution assigns too much probability to central values and too little probability to tail values.

Recall that D(x) = Fn(x)−F ∗(x), so if D(x) < 0, we have F ∗(x) > Fn(x), while if D(x) > 0, we have F ∗(x) < Fn(x).
On the graph shown, we have that D(x) is nearly always negative for the range of the data. [Technically, it is positive
for all values larger than the data sample, but this always happens, because for the largest value of the data sample,
we have Fn(x) = 1 > F ∗(x).] This means that F ∗(x) > Fn(x) for most x in the range. This means that the
Weibull distribution assigns more probability to smaller values of x, and less probability to larger values of x, which
is statement (ii).

17. An insurance company collects a sample of 30 claims. Based on previous experience, it believes these claims might
follow a gamma distribution with α = 2.7 and θ = 1400. To test this, it compares plots of Fn(x) and F∗(x).

0 2000 4000 6000 8000 10000
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F
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)

(a) Which of the following is the value of the Kolmogorov-Smirnov statistic for this model and this data [5 mins.]

(i) 0.0102432

(ii) 0.0450353

(iii) 0.0924252

(iv) 0.1678255

The Kolmogorov-Smirnov test statistic is the maximum value of the absolute difference between the empirical and
model distribution functions, that is |Fn(x)− F ∗(x)|. On the graph, we see this happens at around 2000, and read
the values from the graph:
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We read Fn(x) = 0.066667 (we know the possible values of Fn(x), since we know there are 30 data points), and
F ∗(x) = 0.23 (the actual value is 0.2318889.) The difference is therefore about 1.6, so (iv) is the correct answer.

(b) Which of the following statements best describes the fit of the Gamma distribution to the data: [5 mins.]

(i) The Gamma distribution assigns too much probability to high values and too little probability to low values.

(ii) The Gamma distribution assigns too much probability to low values and too little probability to high values.

(iii) The Gamma distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Gamma distribution assigns too much probability to central values and too little probability to tail values.

From the graph, we see that F ∗ (x) is too large for small values less than about 2500, and about correct for larger
values. This means that the gamma model assigns too little probability in the range 0–2,000 and too much in the
range 2,000–2,500. We also see that F ∗(x) is slightly too low at values above 6,000. This means that the gamma
distribution assigns too little probability to values larger than 6,000. This means that (iv) is probably the best
description of the fit. However, a case could be made for (ii) being a good description, since the difference between
F ∗(x) and Fn(x) for x > 6000 is very small.

18. An insurance company collects a sample of 30 past claims, and attempts to fit a Pareto distribution to the claims.
Based on experience with other claims, the company believes that a Pareto distribution with α = 2.8 and θ = 2, 600
may be appropriate to model these claims. It compares the density functions in the following plot:
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(a) How many data points in the sample were between 1500 and 3000? [5 mins.]

We are asking how many data points are in the last two bars. The height of the fourth bar (from 1,500–2,200) is
about 0.0001, and the height of the fifth bar (from 2,200–3,000) is about 0.00005, so the areas of these two bars are
700×0.0001 = 0.07 and 800×0.00005 = 0.04 respectively. Since there are 30 claims in the sample, these correspond
to 2 data points and 1 data point respectively, (which would give accurate heights of 0.00009524 and 0.00004167
respectively). Therefore, the number of data points between 1,500 and 3,000 is 3.

(b) Which of the following plots is the p-p plot for this data and model? [10 mins.]

(i)
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(ii)
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(iii)
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(iv)
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[15 mins]

From the histogram, we see that the model assigns too little probability to small values less than 300, and too much
probability to values more than 500. The p-p plot should therefore have slope less than 1 for the first part, then
slope more than 1. We would expect Fn(x) > F ∗(x) for all x, so the p-p plot should be entirely below the line y = x
(it is in theory possible there could be some small values with F ∗ (x) > Fn(x), since the histogram only shows
grouped data, so it is possible for example that all samples in the range 0–300 actually fell in the range 200–300).
It seems that the largest difference between Fn(x) and F ∗(x) should happen at around x = 500, and it looks like
the area of the bar 0–300 on the histogram is approximately equal to the combined area of the other 3 bars. More
accurately, it looks like the height of this bar is about 0.0022, and the width is about 300, so the area is about 0.66,
so the largest difference between Fn(x) and F ∗(x) should occur at about Fn(x) = 0.66. Also, after the first bar, the
model is overestimating the probability density, which means that after this point, the slope of the p-p plot should
be more than 1.

Looking at the options, plots (i) and (iii) are above the y = x line for some values of x. Plot (iv) is close to the line
for values less than Fn(x) = 0.5, and does not deviate so much from the line, and its furthest point from the line is
around Fn(x) = 0.9, so it is not correct. Therefore, plot (ii) is the correct plot.

19.

20. An insurance company collects the following sample:

2.31 8.65 35.29 42.27 151.51 194.99 523.50 1262.01 1402.72 6063.74

They model this as following a Pareto distribution with α = 2 and θ = 2000. Calculate the Kolmogorov-Smirnov
statistic for this model and this data. [10 mins.]
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x F ∗ (x) D(x+) D(x−)
2.31 0.002306004 0.002306004 0.09769400 0.09769400
8.65 0.008594205 0.091405795 0.19140580 0.19140580

35.29 0.034377462 0.165622538 0.26562254 0.26562254
42.27 0.040966725 0.259033275 0.35903327 0.35903327

151.51 0.135881599 0.264118401 0.36411840 0.36411840
194.99 0.169776735 0.330223265 0.43022327 0.43022327
523.50 0.371864450 0.228135550 0.32813555 0.32813555

1262.01 0.624085208 0.075914792 0.17591479 0.17591479
1402.72 0.654532208 0.145467792 0.24546779 0.24546779
6063.74 0.938484160 0.038484160 0.06151584 0.06151584

So the Kolmogorov-Smirnov statistic is 0.4302.

21. An insurance company collects the following sample:

0.27 2.03 9.89 16.96 28.38 236.46 268.36 453.19 633.26 718.68 1414.59 1588.19 2535.69

4937.93 5431.13

They model this as following a gamma distribution with α = 0.4 and θ = 6000. Calculate the Anderson-Darling
statistic for this model and this data. [10 mins.]

You are given the following values of the Gamma distribution used in the model:

x F (x) log(F (x)) log(1− F (x))
0.27 0.02056964 −3.8839392 −0.02078414
2.03 0.04609387 −3.0770753 −0.04719001
9.89 0.08680820 −2.4440542 −0.09080935

16.96 0.10767291 −2.2286572 −0.11392253
28.38 0.13222244 −2.0232696 −0.14181987

236.46 0.30572308 −1.1850755 −0.36488438
268.36 0.32111513 −1.1359556 −0.38730373
453.19 0.39258278 −0.9350079 −0.49853938
633.26 0.44506880 −0.8095264 −0.58891114
718.68 0.46633756 −0.7628455 −0.62799177

1414.59 0.59250242 −0.5234003 −0.89772028
1588.19 0.61583950 −0.4847689 −0.95669484
2535.69 0.71295893 −0.3383315 −1.24812996
4937.93 0.84646394 −0.1666877 −1.87381984
5431.13 0.86352967 −0.1467270 −1.99164807

The Anderson-Darling statistic for complete data with no truncation or censorship can be calculated as

A2 = −n+ n

k−1∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) + n

k∑
j=1

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))

We compute the terms in the following table:
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j yj n(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) n(Fn(yj))

2 (log(F ∗(yj+1))− log(F ∗(yj)))
0 0.00 0.311762095
1 0.27 0.345036701333 0.0537909266667
2 2.03 0.491444564001 0.1688056266667
3 9.89 0.221886528 0.1292382000000
4 16.96 0.225038542667 0.2190801066680
5 28.38 1.48709673333 1.3969901666700
6 236.46 0.12106449 0.1178877600000
7 268.36 0.474605439999 0.6564291533340
8 453.19 0.295214416001 0.5353877333330
9 633.26 0.093793512 0.2520768600000

10 718.68 0.449547516666 1.5963013333400
11 1414.59 0.0629061973335 0.3116266266660
12 1588.19 0.174861072 1.4057990400000
13 2535.69 0.166850634666 1.9338534800000
14 4937.93 0.00785521533335 0.2608198133330
15 5431.13 2.2009050000000 1.917233

total 4.92896366333 11.2389918267

This gives A2 = 4.928964 + 11.2389918267− 15 = 1.1679558267.

22. An insurance company collects the following sample:

105.13 304.10 323.11 359.09 360.43 368.63 413.47 448.81 606.88 612.58 930.35 1002.37

1161.78 1205.25 5585.37

They want to decide whether this data is better modeled as following an inverse gamma distribution, or an inverse
exponential distribution. They calculate that the MLEs for the inverse gamma distribution as α = 1.695545 and
θ = 705.7664, and the MLE for the inverse exponential distribution as θ = 416.2476. They also calculate, for this
data that

∑15
i=1 log(xi) = 95.31415 and

∑15
i=1

1
xi

= 0.03603625, and that Γ(1.695545) = 0.9078021. You are given the
following table of critical values for the chi-squared distribution at the 5% significance level. Indicate in your answer
which critical value you are using. [15 mins.]

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

For the inverse gamma distribution, the log-likelihood of the data point x is

log

(
705.76641.695545e−

705.7664
x

x2.695545Γ(1.695545)

)
= 1.695545 log(705.7664)− log(Γ(1.695545))− 2.695545 log(x)− 705.7664

x

= 11.21829− 2.695545 log(x)− 705.7664

x
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The total log-likelihood of the data is therefore

11.21829× 15− 2.695545 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−705.7664

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −114.0824

For the inverse exponential, the log-likelihood of the data point x is

log

(
416.2476

x2
e−

416.2476
x

)
= 6.03128− 2 log(x)− 416.2476

x

The log-likelihood of the data is therefore

6.03128× 15− 2 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−416.2476

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −115.1591

The likelihood ratio statistic is therefore 2(−114.0824 − (−115.1591)) = 2.1534. This should be compared to the
chi-square distribution with one degree of freedom (since the inverse gamma has 2 degrees of freedom, and the inverse
exponential has 1). The critical value for this is 3.841459, so the statistic is not significant. This means there is not
sufficient evidence that the inverse gamma distribution fits the data better.

23. An insurance company collects the following sample:

0.1 0.2 0.3 2.1 16.8 28.4 45.7 53.5 74.2 99.5 159.3 183.5 206.3 273.9 461.9 482.9 1118.5

1444.7 2084.3 3984.8

They want to decide whether this data is better modeled as following an inverse exponential distribution or a Weibull
distribution. They calculate that the MLE for the inverse exponential distribution is θ = 1.052901, and the cor-
responding likelihood is −183.51. They also calculate that for the Weibull distribution, the MLE is τ = 0.48,
θ = 255.2235. The log-likelihood is therefore −141.8325. Use AIC and BIC to determine which distribution is a
better fit for the data. [5 mins.]

The AIC is l(x)− p, while the BIC is l(x)− p
2 log(n). For the inverse exponential distribution, we have p = 1, while

for the Weibull distribution, we have p = 2. For this data set, we have n = 20, so the AIC and BIC are:
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Model AIC BIC
Inverse Exponential −183.51− 1 = −184.51 −183.51− 1

2 log(20) = −185.007866137
Weibull −141.8325− 2 = −143.8325 −141.8325− 2

2 ln(20) = −144.828232274

Therefore, both AIC and BIC prefer the Weibull distribution.

24. An insurance company collects the following data sample on claims data

Claim Amount Number of Claims
Less than $5,000 1,026
$5,000–$10,000 850
$10,000–$20,000 1,182
$20,000–$50,000 942
More than $50,000 573

Its previous experience suggests that the distribution should be modelled as following a Pareto distribution with α = 3
and θ = 28, 000. Perform a chi-squared test to determine whether this distribution is a good fit for the data at the
95% level. [10 mins.]

You may use the following critical values for the chi-squared distribution:

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

The expected frequencies of each interval are:

4573

(
1−

(
28

33

)3
)

= 1779.598

4573

((
28

33

)3

−
(

28

38

)3
)

= 963.9355

4573

((
28

38

)3

−
(

28

48

)3
)

= 921.7474

4573

((
28

48

)3

−
(

28

78

)3
)

= 696.1798

4573

(
28

78

)3

= 211.5395

Therefore, the chi-squared statistic is

(1026− 1779.598)2

1779.598
+

(850− 963.9355)2

963.9355
+

(1182− 921.7474)2

921.7474
+

(942− 696.1798)2

696.1798
+

(573− 211.5395)2

211.5395
= 1110.503
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Since the parameters are not estimated the number of degrees of freedom is 5−1 = 4, so the critical value is 9.487729.
The null hypothesis is rejected. The data do not fit the model well.
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