ACSC/STAT 4703, Actuarial Models II

FALL 2023
Toby Kenney

Homework Sheet 3

Due: Thursday 5th Octomber: 14:30

Basic Questions

1. Loss amounts follow a gamma distribution with shape $\alpha=2.4$ and scale $\theta=500$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.880
1	0.074
2	0.035
3	0.011

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 2,000$. Calculate the expected payment for this excess-of-loss reinsurance.
2. Loss frequency follows a binomial distribution with $n=17$ and $p=0.36$. Loss severity (in thousands) has the following distribution:

Severity	Probability
0	0.31
1	0.23
2	0.11
3	0.18
4 or more	0.17

Use the recursive method to calculate the exact probability that aggregate claims are at least $\$ 4,000$.
3. Use an arithmetic distribution $(h=1)$ to approximate a Gamma distribution distribution with shape $\alpha=3$ and scale $\theta=\frac{5}{12}$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 5,000 terms in the sum.]
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 6.5.

Standard Questions

4. The number of claims an insurance company receives follows a compound Poisson distribution with $\lambda=2548$ for the primary distribution and $\lambda=0.7$ for the secondary distribution. Claim severity follows a negative binomial distribution with $r=0.2$ and $\beta=12$. Calculate the probability that aggregate losses exceed $\$ 6,000$.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate 15,000 terms of the recurrence for f_{s}.]
(b) Using a suitable convolution.
