ACSC/STAT 4703, Actuarial Models II

FALL 2023 Toby Kenney Homework Sheet 1

Model Solutions

Basic Questions

1. An insurance company models losses as following a Pareto distribution with $\alpha = 3.5$ and $\theta = 2000$. The fixed expenses are \$200 per claim, and variable expenses are 14% of loss amount. What is the density function of the distribution of the total cost to the insurance company for a random loss?

If the loss amount is X, then the insurer pays a total of 1.14X + 200. 1.14X follows a Pareto distribution with $\alpha = 3.5$ and $\theta = 2280$. The density function is therefore

$$f(x) = \begin{cases} \frac{3.5 \times 2280^{3.5}}{(2080+x)^{4.5}} & \text{if } x > 200\\ 0 & \text{otherwise} \end{cases}$$

2. An insurer is modelling losses using a generalised regression model. Under their model, the losses X_i for a given policyholder should follow an inverse gamma distribution with shape $\alpha = 3$ and scale θ_i estimated by the regression model. To assess the model, they record the square $(X_i - \frac{\theta_i}{2})^2$. What is the density function for the distribution of this statistic.

The density for $X_i - \frac{\theta}{2}$ is

$$g(x) = \begin{cases} \frac{-\frac{\theta_i}{\theta_i} - \frac{\theta_i}{x + \frac{\theta_i}{2}}}{2\left(x + \frac{\theta_i}{2}\right)} & \text{if } x > -\frac{\theta_i}{2} \\ 0 & \text{otherwise} \end{cases}$$

The density for $(X_i - \frac{\theta}{2})^2$ is therefore

$$f(x) = \begin{cases} \frac{1}{2\sqrt{x}} \frac{\theta_i^3 e^{-\frac{\sigma_i}{\sqrt{x} + \frac{\theta_i}{2}}}}{2\left(\sqrt{x} + \frac{\theta_i}{2}\right)^4} & \text{if } x > \frac{\theta_i^2}{4} \\ \frac{1}{2\sqrt{x}} \left(\frac{\theta_i^3 e^{-\frac{\sigma_i}{\sqrt{x} + \frac{\theta_i}{2}}}}{2\left(\sqrt{x} + \frac{\theta_i}{2}\right)^4} + \frac{\theta_i^3 e^{-\frac{\sigma_i}{2} - \sqrt{x}}}{2\left(\frac{\theta_i}{2} - \sqrt{x}\right)^4} \right) & \text{if } 0 < x < \frac{\theta_i^2}{4} \\ 0 & \text{if } x \leqslant 0 \end{cases}$$

3. An insurance company has the following data on its policies:

Policy limit	Losses Limited to					
	50,000	100,000	200,000	500,000	1,000,000	
50,000	8,131,429					
100,000	10,833,728	15,096,434				
200,000	15,763,797	22, 145, 370	25440902			
500,000	30, 126, 054	46,654,553	58336196	72339459		
1,000,000	20,899,468	29,641,835	41482022	44513950	42764662	

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using

(a) The direct ILF estimate.

The direct ILF estimate is $\frac{42764662}{20899468} = 2.04620816185$

(b) The incremental method.

The incremental ILF is

 $\frac{42764662}{44513950} \times \frac{44513950 + 72339459}{41482022 + 58336196} \times \frac{41482022 + 58336196 + 25440902}{29641835 + 46654553 + 22145370} \times \frac{29641835 + 46654553 + 22145370 + 15096434}{20899468 + 30126054 + 15763797 + 10833728} = 2.09315682301$

4. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 100,000. It has the following data on a set of 4,407 claims from policies with limit \$1,000,000.

Losses Limited to	100,000	500,000	1,000,000
Total claimed	\$950,249	\$1,318,024	\$1,451,334

Calculate the ILF from \$100,000 to \$1,000,000.

The pure premium for limit \$100,000 is $\frac{950249}{4407} = 215.622645791$. The risk charge is $\frac{215.622645791^2}{100000} = 0.464931253779$. Thus the total premium is 215.622645791 + 0.464931253779 = 216.087577045. The pure premium for limit \$1,000,000 is $\frac{1451334}{4407} = 329.324710688$. The risk charge is $\frac{329.324710688^2}{100000} = 1.0845476507$. Thus the total premium is 329.324710688 + 1.0845476507 = 330.409258339. The ILF is therefore $\frac{330.409258339}{216.087577045} = 1.52905253906$.

Standard Questions

5. An insurer divides losses into two parts: property and medical. It models the property losses as following an exponential distribution with mean Θ , and the medical losses as following an exponential distribution with mean 2Θ , where Θ varies between individuals, following an inverse gamma distribution with $\theta = 500$ and $\alpha = 3$. What is the probability that a random claim exceeds \$50,000?

For a given value $\Theta = \theta$, the total losses are the sum of an exponential distribution with mean θ and an exponential distribution with mean 2θ . The density of this sum is given by

$$f(x) = \int_0^x \frac{e^{-\frac{y}{2\theta}}}{\theta} \frac{e^{-\frac{x-y}{2\theta}}}{2\theta} \, dy = \frac{e^{-\frac{x}{2\theta}}}{2\theta^2} \int_0^x e^{y\left(\frac{1}{2\theta} - \frac{1}{\theta}\right)} \, dy = \frac{e^{-\frac{x}{2\theta}}}{2\theta^2} \int_0^x e^{-\frac{y}{2\theta}} \, dy = \frac{e^{-\frac{x}{2\theta}} \left(1 - e^{-\frac{x}{2\theta}}\right)}{\theta}$$

The probability that the losses exceed \$50,000 for a given value of θ is

$$\frac{1}{\theta} \int_{50000}^{\infty} \left(e^{-\frac{x}{2\theta}} - e^{-\frac{x}{\theta}} \right) \, dx = \frac{1}{\theta} \left[\theta e^{-\frac{x}{\theta}} - 2\theta e^{-\frac{x}{2\theta}} \right]_{50000}^{\infty} = 2e^{-\frac{25000}{\theta}} - e^{-\frac{50000}{\theta}}$$

The marginal probability that a loss exceeds \$50,000 is the expectation of this over the distribution of Θ , which is

$$\int_{0}^{\infty} \frac{500^{3}}{2\theta^{4}} e^{-\frac{500}{\theta}} \left(2e^{-\frac{25000}{\theta}} - e^{-\frac{50000}{\theta}}\right) d\theta = \int_{0}^{\infty} \frac{500^{3}e^{-\frac{25500}{\theta}}}{\theta^{4}} d\theta - \int_{0}^{\infty} \frac{500^{3}e^{-\frac{50500}{\theta}}}{2\theta^{4}} d\theta = \frac{2 \times 500^{3}}{25500^{3}} - \frac{500^{3}}{50500^{3}} = 0.0000141065672049$$

Solution based on inverse exponential [An early version of the homework said ambiguously that Θ follows an inverse exponential distribution with $\theta = 500$ and $\alpha = 3$. If this was interpreted as inverse exponential with $\theta = 500$, then the marginal probability is calculated as follows:]

$$\int_{0}^{\infty} \frac{500}{\theta} e^{-\frac{500}{\theta}} \left(2e^{-\frac{25000}{\theta}} - e^{-\frac{50000}{\theta}} \right) d\theta = \int_{0}^{\infty} \frac{1000e^{-\frac{25500}{\theta}}}{\theta} d\theta - \int_{0}^{\infty} \frac{500e^{-\frac{50500}{\theta}}}{\theta} d\theta = \frac{1000}{25500} - \frac{500}{50500} = 0.0293146961755$$

6. An insurance company's premiums include a risk charge proportional to the square of the expected claim. This results in a 20% loading for it's policies with limit \$500,000. A reinsurer offers reinsurance of \$500,000 over \$500,000 for a loading of 45%. The insurer calculates that this buying this reinsurance would not affect its premium (i.e. the premium with limit \$500,000 plus the reinsurance premium is equal to the premium with limit \$1,000,000). What is the ILF from \$500,000 to \$1,000,000? (It is not 1.)

Let the risk charge be $\frac{\mathbb{E}(X \wedge l)^2}{c}$ for some constant c. We are given that $\frac{\mathbb{E}(X \wedge 500000)^2}{c} = 0.2\mathbb{E}(X \wedge 500000)$, so $c = \frac{\mathbb{E}(X \wedge 500000)}{0.2}$. Let $x = \mathbb{E}(X \wedge 500000)$, and $y = \mathbb{E}(X \wedge 1000000)$. The reinsurer's expected payment is

y-x, so the reinsurer's premium is 1.45(y-x). The insurer's premium for a policy with limit \$1,000,000 is $y + \frac{y^2}{c} = y + \frac{0.2y^2}{x}$. Since the premiums with and without reinsurance are equal, we have

$$y + \frac{0.2y^2}{x} = 1.2x + 1.45(y - x) = 1.45y - 0.25x$$
$$-0.45\frac{y}{x} + 0.2\left(\frac{y}{x}\right)^2 = -0.25$$
$$0.2\left(\frac{y}{x} - 1\right)\left(\frac{y}{x} - 1.25\right) = 0$$
$$\frac{y}{x} = 1.25$$

so the ILF s 1.25.