ACSC/STAT 4703, Actuarial Models II

FALL 2023
Toby Kenney
Homework Sheet 1
Model Solutions

Basic Questions

1. An insurance company models losses as following a Pareto distribution with $\alpha=3.5$ and $\theta=2000$. The fixed expenses are $\$ 200$ per claim, and variable expenses are 14% of loss amount. What is the density function of the distribution of the total cost to the insurance company for a random loss?

If the loss amount is X, then the insurer pays a total of $1.14 X+200$. $1.14 X$ follows a Pareto distribution with $\alpha=3.5$ and $\theta=2280$. The density function is therefore

$$
f(x)= \begin{cases}\frac{3.5 \times 2280^{3.5}}{(2080+x)^{4.5}} & \text { if } x>200 \\ 0 & \text { otherwise }\end{cases}
$$

2. An insurer is modelling losses using a generalised regression model. Under their model, the losses X_{i} for a given policyholder should follow an inverse gamma distribution with shape $\alpha=3$ and scale θ_{i} estimated by the regression model. To assess the model, they record the square $\left(X_{i}-\frac{\theta_{i}}{2}\right)^{2}$. What is the density function for the distribution of this statistic.

The density for $X_{i}-\frac{\theta}{2}$ is

$$
g(x)= \begin{cases}\frac{\theta_{i}^{3} e^{-\frac{\theta_{i}}{x+\frac{\theta_{i}}{2}}}}{2\left(x+\frac{\theta_{i}}{2}\right)} & \text { if } x>-\frac{\theta_{i}}{2} \\ 0 & \text { otherwise }\end{cases}
$$

The density for $\left(X_{i}-\frac{\theta}{2}\right)^{2}$ is therefore

$$
f(x)= \begin{cases}\frac{1}{2 \sqrt{x}} \frac{\theta_{i}^{3} e^{-\frac{\theta_{i}}{\sqrt{x}+\frac{\theta_{i}}{2}}}}{2\left(\sqrt{x}+\frac{\theta_{i}}{2}\right)^{4}} & \text { if } x>\frac{\theta_{i}^{2}}{4} \\ \frac{1}{2 \sqrt{x}}\left(\frac{\theta_{i}^{3} e^{-\frac{\theta_{i}}{\sqrt{x}+\frac{\theta_{i}}{2}}}}{2\left(\sqrt{x}+\frac{\theta_{i}}{2}\right)^{4}}+\frac{\theta_{i}^{3} e^{-\frac{\theta_{i}}{\theta_{i}}-\sqrt{x}}}{2\left(\frac{\theta_{i}}{2}-\sqrt{x}\right)^{4}}\right) & \text { if } 0<x<\frac{\theta_{i}^{2}}{4} \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

3. An insurance company has the following data on its policies:

Policy limit	50,000	100,000	200,000	500,000	$1,000,000$
50,000	$8,131,429$				
100,000	$10,833,728$	$15,096,434$			
200,000	$15,763,797$	$22,145,370$	25440902		
500,000	$30,126,054$	$46,654,553$	58336196	72339459	
$1,000,000$	$20,899,468$	$29,641,835$	41482022	44513950	42764662

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using
(a) The direct ILF estimate.

The direct ILF estimate is $\frac{42764662}{20899468}=2.04620816185$
(b) The incremental method.

The incremental ILF is
$\frac{42764662}{44513950} \times \frac{44513950+72339459}{41482022+58336196} \times \frac{41482022+58336196+25440902}{29641835+46654553+22145370} \times \frac{29641835+46654553+22145370+15096434}{20899468+30126054+15763797+10833728}=2.09315682301$
4. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 100,000. It has the following data on a set of 4,407 claims from policies with limit \$1,000,000.

Losses Limited to	100,000	500,000	$1,000,000$
Total claimed	$\$ 950,249$	$\$ 1,318,024$	$\$ 1,451,334$

Calculate the ILF from \$100,000 to \$1,000,000.
The pure premium for limit $\$ 100,000$ is $\frac{950249}{4407}=215.622645791$. The risk charge is $\frac{215.622645791^{2}}{100000}=0.464931253779$. Thus the total premium is $215.622645791+0.464931253779=216.087577045$. The pure premium for limit $\$ 1,000,000$ is $\frac{1451334}{4407}=329.324710688$. The risk charge is $\frac{329.324710688^{2}}{100000}=$ 1.0845476507 . Thus the total premium is $329.324710688+1.0845476507=$ 330.409258339. The ILF is therefore $\frac{330.409258339}{216.087577045}=1.52905253906$.

Standard Questions

5. An insurer divides losses into two parts: property and medical. It models the property losses as following an exponential distribution with mean Θ, and the medical losses as following an exponential distribution with mean
2Θ, where Θ varies between individuals, following an inverse gamma distribution with $\theta=500$ and $\alpha=3$. What is the probability that a random claim exceeds \$50,000?

For a given value $\Theta=\theta$, the total losses are the sum of an exponential distribution with mean θ and an exponential distribution with mean 2θ. The density of this sum is given by
$f(x)=\int_{0}^{x} \frac{e^{-\frac{y}{\theta}}}{\theta} \frac{e^{-\frac{x-y}{2 \theta}}}{2 \theta} d y=\frac{e^{-\frac{x}{2 \theta}}}{2 \theta^{2}} \int_{0}^{x} e^{y\left(\frac{1}{2 \theta}-\frac{1}{\theta}\right)} d y=\frac{e^{-\frac{x}{2 \theta}}}{2 \theta^{2}} \int_{0}^{x} e^{-\frac{y}{2 \theta}} d y=\frac{e^{-\frac{x}{2 \theta}}\left(1-e^{-\frac{x}{2 \theta}}\right)}{\theta}$

The probability that the losses exceed $\$ 50,000$ for a given value of θ is
$\frac{1}{\theta} \int_{50000}^{\infty}\left(e^{-\frac{x}{2 \theta}}-e^{-\frac{x}{\theta}}\right) d x=\frac{1}{\theta}\left[\theta e^{-\frac{x}{\theta}}-2 \theta e^{-\frac{x}{2 \theta}}\right]_{50000}^{\infty}=2 e^{-\frac{25000}{\theta}}-e^{-\frac{50000}{\theta}}$
The marginal probability that a loss exceeds $\$ 50,000$ is the expectation of this over the distribution of Θ, which is

$$
\int_{0}^{\infty} \frac{500^{3}}{2 \theta^{4}} e^{-\frac{500}{\theta}}\left(2 e^{-\frac{25000}{\theta}}-e^{-\frac{50000}{\theta}}\right) d \theta=\int_{0}^{\infty} \frac{500^{3} e^{-\frac{25500}{\theta}}}{\theta^{4}} d \theta-\int_{0}^{\infty} \frac{500^{3} e^{-\frac{50500}{\theta}}}{2 \theta^{4}} d \theta=\frac{2 \times 500^{3}}{25500^{3}}-\frac{500^{3}}{50500^{3}}=0.0000141065672049
$$

Solution based on inverse exponential [An early version of the homework said ambiguously that Θ follows an inverse exponential distribution with $\theta=500$ and $\alpha=3$. If this was interpreted as inverse exponential with $\theta=500$, then the marginal probability is calculated as follows:]

$$
\int_{0}^{\infty} \frac{500}{\theta} e^{-\frac{500}{\theta}}\left(2 e^{-\frac{25000}{\theta}}-e^{-\frac{50000}{\theta}}\right) d \theta=\int_{0}^{\infty} \frac{1000 e^{-\frac{25500}{\theta}}}{\theta} d \theta-\int_{0}^{\infty} \frac{500 e^{-\frac{50500}{\theta}}}{\theta} d \theta=\frac{1000}{25500}-\frac{500}{50500}=0.0293146961755
$$

6. An insurance company's premiums include a risk charge proportional to the square of the expected claim. This results in a 20% loading for it's policies with limit $\$ 500,000$. A reinsurer offers reinsurance of $\$ 500,000$ over $\$ 500,000$ for a loading of 45%. The insurer calculates that this buying this reinsurance would not affect its premium (i.e. the premium with limit $\$ 500,000$ plus the reinsurance premium is equal to the premium with limit $\$ 1,000,000$). What is the ILF from $\$ 500,000$ to $\$ 1,000,000$? (It is not 1.)

Let the risk charge be $\frac{\mathbb{E}(X \wedge l)^{2}}{c}$ for some constant c. We are given that $\frac{\mathbb{E}(X \wedge 500000)^{2}}{c}=0.2 \mathbb{E}(X \wedge 500000)$, so $c=\frac{\mathbb{E}(X \wedge 500000)}{0.2}$. Let $x=\mathbb{E}(X \wedge$ $500000)$, and $y=\mathbb{E}(X \wedge 1000000)$. The reinsurer's expected payment is
$y-x$, so the reinsurer's premium is $1.45(y-x)$. The insurer's premium for a policy with limit $\$ 1,000,000$ is $y+\frac{y^{2}}{c}=y+\frac{0.2 y^{2}}{x}$. Since the premiums with and without reinsurance are equal, we have

$$
\begin{aligned}
y+\frac{0.2 y^{2}}{x} & =1.2 x+1.45(y-x)=1.45 y-0.25 x \\
-0.45 \frac{y}{x}+0.2\left(\frac{y}{x}\right)^{2} & =-0.25 \\
0.2\left(\frac{y}{x}-1\right)\left(\frac{y}{x}-1.25\right) & =0 \\
\frac{y}{x} & =1.25
\end{aligned}
$$

so the ILF s 1.25.

