ACSC/STAT 4703, Actuarial Models II

FALL 2023
Toby Kenney
Homework Sheet 2
Model Solutions

Basic Questions

1. An insurer models losses as following a distribution with distribution function $F(x)=1-\left(1+x^{4}\right)^{-1}$. They find that $c_{n}=n^{\frac{1}{4}}$ and $d_{n}=n^{\frac{1}{4}}$ make the distribution of block maxima converge. What is the limiting distribution?

We have $P\left(M_{n}<c_{n} x+d_{n}\right)=F\left(c_{n} x+d_{n}\right)^{n}=\left(1-\frac{1}{\left(c_{n} x+d_{n}\right)^{4}+1}\right)^{n}$. Substituting the given values gives

$$
\begin{aligned}
\log \left(P\left(M_{n}<c_{n} x+d_{n}\right)\right) & =n \log \left(1-\frac{1}{n+c_{n} x n^{\frac{3}{4}}+c_{n}^{2} x^{2} n^{\frac{1}{2}}+c_{n}^{3} x^{3} n^{\frac{1}{4}}+c_{n}^{4} x^{4}+1}\right) \\
& =-\frac{n}{n+4 n x+6 n x^{2}+4 n x^{3}+n x^{4}+1}+O\left(n^{-1}\right) \\
& =-\frac{1}{(1+x)^{4}+n^{-1}}+O\left(n^{-1}\right) \\
& =-(1+x)^{-4}+O\left(n^{-1}\right)
\end{aligned}
$$

Thus, the limiting distribution is Fréchet, with $\xi=4$.
2. An insurer models losses as following a distribution with survival function $S(x)=(7 x+\cos (2 \pi x))^{-1}$. What values of c_{n} and d_{n} make the distribution of block maxima converge, and what is the limiting distribution?

We have $n S\left(c_{n} x+d_{n}\right)=n\left(7 c_{n} x+7 d_{n}+\cos \left(2 c_{n} \pi x+2 d_{n} \pi\right)\right)^{-1}$. We want this to converge for every x. For $x=0$, we want $n\left(7 d_{n}+\cos \left(2 d_{n} \pi\right)\right)^{-1}$ to converge to 1 . Since $\cos \left(2 \pi d_{n}\right)$ is much smaller than d_{n}, we see that $d_{n}=\frac{n}{7}$ satisfies this condition. Similarly, we see that for $c_{n}=a n$ for a
constant a,

$$
\begin{aligned}
\frac{n}{7 c_{n} x+7 d_{n}+\cos \left(2 c_{n} \pi x+2 d_{n} \pi\right)} & =\frac{n}{7 a n x+n+\cos (2 a \pi x+2 n \pi)} \\
& =\frac{1}{7 a x+1}-n\left(\frac{1}{7 a n x+n}-\frac{1}{7 a n x+n+\cos (2 a \pi x)}\right) \\
& =\frac{1}{7 a x+1}-n\left(\frac{\cos (2 a \pi x)}{(7 a x+1) n((7 a x+1) n+\cos (2 a \pi x))}\right) \\
& \rightarrow \frac{1}{7 a x+1}
\end{aligned}
$$

In particular, if $a=\frac{1}{7}$, then we have $n S\left(c_{n} x+d_{n}\right) \rightarrow(1+x)^{-1}$, so the limiting distribution of M_{n} is a Fréchet distribution with $\xi=1$ and the values $c_{n}=\frac{n}{7}$ and $d_{n}=\frac{n}{7}$ make the sequence converge.
3. A loss follows a distribution from the MDA of a Fréchet distribution with $\xi=0.4$. A reinsurer estimates that the probability of the loss exceeding $\$ 500,000$ is 0.006 and the probability of a loss exceeding $\$ 1,000,000$ is 0.002. What is the expected payment on an excess-of-loss reinsurance contract of $\$ 1,000,000$ over $\$ 1,000,000$ for this loss.

Since the distribution of X is in the MDA of a Fréchet distribution with $\xi=0.4$, the excess-loss function converges to a generalised Pareto distribution with $\xi=0.4$. We also have $P(X-500000>500000 \mid X>500000)=$ $\frac{0.002}{0.006}=\frac{1}{3}$, which gives the scale parameter of the excess-loss distribution. We have that $X-500000 \mid X>500000$ has a Pareto distribution with parameters $\alpha=\frac{1}{0.4}=2.5$ and θ given by solving

$$
\begin{aligned}
\left(\frac{\theta}{\theta+500000}\right)^{2.5} & =\frac{1}{3} \\
\frac{\theta}{\theta+500000} & =3^{-0.4} \\
\frac{\theta+500000}{\theta} & =3^{0.4} \\
\frac{500000}{\theta} & =3^{0.4}-1 \\
\theta & =\frac{500000}{3^{0.4}-1}=906050.575795
\end{aligned}
$$

For $x>500000$ we therefore have $S(x)=0.006\left(\frac{\theta}{\theta+x-500000}\right)^{2.5}$ The ex-
pected payment on the reinsurance is therefore

$$
\begin{aligned}
\int_{1000000}^{2000000} 0.006\left(\frac{\theta}{\theta+x-500000}\right)^{2.5} d x & =\int_{\theta+500000}^{\theta+1500000} 0.006 \theta^{2.5} u^{-2.5} d u \\
& =0.006 \theta^{2.5}\left[-\frac{u^{-1.5}}{1.5}\right]_{\theta+500000}^{\theta+1500000} \\
& =0.004 \theta^{2.5}\left((\theta+500000)^{-1.5}-(\theta+1500000)^{-1.5}\right) \\
& =\$ 1,037.24
\end{aligned}
$$

Standard Questions

4. The file HW2_data.txt contains 1,000,000 values of a random variable.
(a) By dividing into blocks of different sizes, and using the fit.GEV function in the QRM package in R, estimate the tail index ξ.

We use the following R code to evaluate for block sizes multiples of 200 up to 20,000 (If the block size is too large, there are too few observations and fit.GEV produces an error):

```
HW2Q4_read.table("../HW2_data.txt")[[1]]
library ("QRM")
GEV_estimates<-rep (0,100)
for(i in seq_len(100)){
    nbl<-floor(5000/i )
    MK-matrix(HW2Q4[seq_len(nbl*200*i )],200*i , nbl)
    GEV_model<-fit.GEV(apply (M, 2,max))
    GEV_estimates[i]<-GEV_model$par.ests [" xi"]
}
```

This produces the following estimates:

(b) The file HW2_data.txt contains 1,000,000 values of a random variable. Use the Hill estimator to estimate ξ at a range of different thresholds.

We use the following R code to evaluate for threshold positions multiples of 200 up to 980,000 :

```
HW2Q4.log.sort<-sort(log(HW2Q4))
Hill_estimates<-rep (0,4900)
for(i in seq_len(4900)){
    pos<-i*200
    Hill_estimates[i]<-mean(HW2Q4.log.sort[(pos+1):1000000]) -HW2Q4.log.sort[pos]
}
```

This produces the following estimates:

The reason the estimates do not converge well is that ξ is negative for the data, whereas the Hill estimator only works for positive ξ.
[I originally intended to include a second data set for this question with positive ξ. Using this dataset, the estimates produce the following plot, which shows a much more stable estimate, until the threshold gets too high, when the sample size becomes too small, leading to an unstable estimate.]

5. A insurer wants to calculate the ILF for a heavy-tailed loss. Based on previous data, they estimate that the distribution of the loss is in the MDA of a Fréchet distribution with $\xi=2$. The ILF from $\$ 500,000$ to $\$ 1,000,000$ is 1.28 and the ILF from $\$ 500,000$ to $\$ 2,000,000$ is 1.76. Assuming the GPD approximation applies to losses above \$500,000, what is the ILF from $\$ 500,000$ to $\$ 5,000,000$?

Under the GPD approximation, losses exceeding \$500,000 follow a GPD distribution with parameter ξ. The survival function is therefore $\left(1+\xi \frac{x}{\beta}\right)^{-\frac{1}{\xi}}$. We cannot use this approximation to estimate $\mathbb{E}(X \wedge 500000)$, but we have
that

$$
\begin{aligned}
\mathbb{E}(((X \wedge b)-a) \mid X>a) & =\int_{0}^{b-a} S_{x-a}(x) d x \\
& =\int_{0}^{b-a}\left(1+2 \frac{x}{\beta}\right)^{-\frac{1}{2}} d x \\
& =\int_{1}^{1+\frac{2(b-a)}{\beta}} u^{-\frac{1}{2}} d u \\
& =\left[\frac{2}{2-1} u^{1-\frac{1}{2}}\right]_{1}^{1+\frac{2(b-a)}{\beta}} \\
& =\frac{2}{2-1}\left(\left(1+\frac{2(b-a)}{\beta}\right)^{\frac{2-1}{2}}-1\right)
\end{aligned}
$$

Let l_{0} be the expected loss with policy limit $\$ 500,000$ and s_{0} be the probability of a loss exceeding $\$ 500,000$. Since β is a scale parameter, we can
rescale the loss in units of $\$ 500,000$. We have

$$
\begin{aligned}
& \mathbb{E}\left(((X \wedge 2)-1)_{+}\right)=s_{0} \mathbb{E}(((X \wedge 2)-1) \mid X>1) \\
&=s_{0} \frac{2}{2-1}\left(\left(1+\frac{2}{\beta}\right)^{\frac{2-1}{2}}-1\right)=0.28 l_{0} \\
& \mathbb{E}\left(((X \wedge 4)-1)_{+}\right)=s_{0} \frac{2}{2-1}\left(\left(1+\frac{6}{\beta}\right)^{\frac{2-1}{2}}-1\right)=0.76 l_{0} \\
&\left(\left(1+\frac{6}{\beta}\right)^{\frac{2-1}{2}}-1\right)=\frac{0.76}{0.28}\left(\left(1+\frac{2}{\beta}\right)^{\frac{2-1}{2}}-1\right) \\
& \sqrt{1+\frac{6}{\beta}}=\frac{19}{7} \sqrt{1+\frac{2}{\beta}}-\frac{12}{7} \\
& 1+\frac{6}{\beta}=\frac{361}{49}\left(1+\frac{2}{\beta}\right)-\frac{2 \times 12 \times 19}{49} \sqrt{1+\frac{2}{\beta}}+\frac{144}{49} \\
& \sqrt{2 \times 12 \times \frac{2}{\beta}}=1+\frac{107}{114 \beta} \\
& \sqrt{1+\frac{2}{\beta}}=\frac{361}{49}+\frac{144}{49}-1+\left(\frac{361}{49}-3\right) \frac{2}{\beta}=\frac{456}{49}+\frac{214}{49} \frac{2}{\beta} \\
& 1+\frac{2}{\beta}=1+\frac{107}{57 \beta}+\frac{107^{2}}{114^{2} \beta^{2}} \\
& \sqrt{19} \\
& \frac{107^{2}}{114^{2} \beta^{2}}-\frac{7}{57 \beta}=0 \\
& \beta=\frac{57}{7} \frac{107^{2}}{114^{2}}=\frac{11449}{1498}=7.17355889724
\end{aligned}
$$

Using this, we calculate

$$
\begin{aligned}
2 s_{0}\left(\left(1+\frac{2}{\beta}\right)^{\frac{1}{2}}-1\right) & =0.28 l_{0} \\
\frac{s_{0}}{l_{0}} & =\frac{0.14}{\left(1+\frac{2}{7.17355889724}\right)^{\frac{1}{2}}-1}=1.06999999996 \\
\mathbb{E}\left(((X \wedge 10)-1)_{+}\right) & =2 s_{0}\left(\left(1+\frac{18}{7.17355889724}\right)^{\frac{1}{2}}-1\right)=1.74657965542 s_{0}=1.86884023123 l_{0}
\end{aligned}
$$

So the ILF from $\$ 500,000$ to $\$ 5,000,000$ is 2.86884023123 .

