ACSC/STAT 4703, Actuarial Models II

FALL 2023
Toby Kenney
Homework Sheet 4
Model Solutions

Basic Questions

1. The file HW4_data1.txt contains 200 i.i.d. samples of a random variable. An insurer is trying to model this random variable as following a Pareto distribution with $\alpha=9$, as suggested by data sets from earlier years. Graphically compare this empirical distribution with the best Pareto distribution with $\alpha=9$. From the data, they find that the $M L E$ for θ is $\theta=52.61$. Include the following plots:
(a) Comparisons of $F(x)$ and $F^{*}(x)$
```
### Fnx - count proportion of observations less than x.
x<-seq_len (10000)*0.0035
theta<-52.61
Fx<-rowMeans (x%*%t (rep (1,200)) > rep (1,10000)%*%t (HW4_data))
### Actually, can use Fx<-rowMeans(x>rep (1,10000)%*%t(HW4_data))
### Because R repeats vectors when comparing matrices of different sizes.
### Adjust margins to allow larger axis labels.
par (mar=c (4,5,1,1))
### Plot empirical cdf
plot(x,Fx,type='l', ylab=expression (F[n](x)), cex. axis=1.5,cex.lab=1.5)
### Plot model cdf
points (x, 1-(theta/(theta }+\textrm{x})\mp@subsup{)}{}{\wedge}9, col="red",type='l')
```


(b) Comparisons of $f(x)$ and $f^{*}(x)$
\#\#\# Use built-in hist function
\#\# Since I set unequal breaks, probability=TRUE is unnecessary.
hist (HW4_data, probability $=$ TRUE, breaks $=c(0,1,4,8,15,30)$, cex. axis $=2$, cex. $\operatorname{lab}=2$, $\mathrm{ylim}=\mathrm{c}(0,0.18$
\#\#\# The default evenly spaced breaks cover up the small first bar, and
\#\#\# produce some bars based on a very small number of points.
\#\#\# plot the model density on the same graph.
points $\left(x, 9 * 52.61^{\wedge} 9 /(52.61+x)^{\wedge} 10\right.$, type='l', col="red")

Histogram of HW4_data

(c) A plot of $D(x)$ against x.

```
### Adjust margins to allow larger axis labels.
par (mar=c (4,5,1,1))
### Plot empirical cdf
    plot (x,1-(theta/theta+x )}\mp@subsup{)}{}{\wedge}\mathrm{ alpha-Fx, type ='l', ylab=expression (D(x)), cex. axis=1.5,cex . lab=1.5
### Plot model cdf
    abline (h=0)
```


(d) A p-p plot of $F(x)$ against $F^{*}(x)$.

Fstar $<-1-(\text { theta } /(\text { theta }+ \text { sort }(\text { HW4_data })))^{\wedge} 9$
Fstar_repeat $<-c(0$, rep $($ Fstar, each $=2), 1)$
Fn_lower_upper<-rep (c (0, seq_len (n)/n), each=2)
\#\#\# Adjust margins to allow larger axis labels.
$\operatorname{par}(\operatorname{mar}=c(4,5,1,1))$
\#\#\# Plot empirical cdf
plot (Fn_lower_upper, Fstar_repeat, type $=^{\prime} l$ ', ylab=expression (paste $\left.(F, " * ")(x)\right)$, xlab=expressio
\#\#\# Plot model cdf
abline (0,1, col="red")

2. For the data in HW4_data1.txt, calculate the following test statistics for the goodness of fit of the Pareto distribution with $\alpha=9$ and θ estimated by MLE:
(a) The Kolmogorov-Smirnov test.

Using the following code:

```
HW4_data<-read.table("HW4_data1.txt")
HW4_sorted<-sort(HW4_data [[1]])
n<-length(HW4_sorted)
theta}<-52.6
Fstari<-1-(theta/(theta+HW4_sorted))^9 # Model CDF
Fn.plus<-seq_len(n)/n # empirical CDF above
Fn.minus<-(seq_len (n)-1)/n # empirical CDF below
KS<-max(c(Fn.plus-Fstari, Fstari-Fn.minus))
```

the Kolmogorov-Smirnov statistic is 0.1281354 , attained at the sample $x=1.42$.
(b) The Anderson-Darling test.

We use the following code:

```
200*(sum(((200:0)/200) ^ 2*(c(0, log(1-Fstari)) -c(log(1-Fstari [seq_len (200)]),0)))+
    sum(((1:200)/200)^2*(c(log(Fstari[seq_len (199) +1]),0) - log(Fstari))) - 1)
```

This gives the Anderson-Darling statistic as 3.671391.
(c) The chi-square test, dividing into the intervals 0-1,1-5,5-10 and more than 10.

The probability of the interval $[a, b]$ is $\left(\frac{\theta}{\theta+a}\right)^{9}-\left(\frac{\theta}{\theta+b}\right)^{9}$. The expected number of observations are 200 times this. We use the following R code to make a table.
cut. Surv $<-c\left((\text { theta } /(\operatorname{theta}+c(0,1,5,10)))^{\wedge} 9,0\right)$
Obs. freq<-table (cut (HW4_data, breaks=c $(0,1,5,10,1000)$, right=FALSE) $\#$ Observed frequencies
Exp.freq $<-200 *$ (cut.Surv $[-5]-$ cut.Surv $[-1]$) \#Expected Frequencies
cbind (Obs.freq, Exp.freq, (Obs.freq-Exp.freq) ^2/Exp.freq)
$\operatorname{sum}\left((\text { Obs.freq-Exp.freq })^{\wedge} 2 / \operatorname{Exp} . f r e q\right)$

This gives the following table:

Interval	E	O	$\frac{(O-E)^{2}}{E}$
$[0,1)$	31.17668	13	10.5973950
$[1,5)$	80.48201	94	2.2705190
$[5,10)$	46.57257	56	1.9083431
$[10, \infty)$	41.76874	37	0.5444475
Total			15.3207

The Chi-squared statistic is 15.3207 .
3. For the data in HW4_data1.txt, perform a likelihood ratio test to determine whether a Pareto distribution with fixed $\alpha=9$, or a generalised Pareto distribution with α, τ and θ freely estimated is a better fit for the data. [For the generalised Pareto distribution, the MLE is $\alpha=5.6701$, $\tau=1.86747$ and $\theta=15.89494$.]

The log-likelihood is given by

$$
\sum_{i=1}^{200} \log (\Gamma(\alpha+\tau))-\log (\Gamma(\alpha))-\log (\Gamma(\tau))+\alpha(\log (\theta))+(\tau-1) \log \left(x_{i}\right)-(\alpha+\tau) \log \left(x_{i}+\theta\right)
$$

We calculate this for the two parameter values

```
alpha<-5.6701
tau<-1.86747
theta<-15.89494
200*(log(gamma(alpha+tau))}-\operatorname{log}(\operatorname{gamma}(\operatorname{alpha}))-\operatorname{log}(\operatorname{gamma}(tau))+\operatorname{alpha* log}(theta))
    (tau -1)*sum( log (HW4_data)) -( alpha+tau )*sum(log(theta+HW4_data ))
```

Gives the log-likelihoods -559.8156 and -571.4705 respectively. Thus the \log-likelihood ratio is $2(-559.8156-(-571.4705))=23.3098$. This is compared to a chi-squared distribution with two degrees of freedom, so the critical value, at the 5% significance level, is 5.991465 , so we reject $\alpha=9, \tau=1$.
4. For the data in HW4_data1.txt, use AIC and BIC to choose between a Pareto distribution with $\alpha=9$ for the data and a transformed gamma distribution. [The MLE for the transformed gamma distribution is $\alpha=$ $0.883801, \tau=1.304570$ and $\theta=7.650101$.]

The log-likelihood for the transformed gamma distribution is

$$
\sum_{i=1}^{200} \log (\tau)+\tau \alpha\left(\log \left(x_{i}\right)-\log (\theta)\right)-\left(\frac{x_{i}}{\theta}\right)^{\tau}-\log \left(x_{i}\right)-\log (\Gamma(\alpha))
$$

We substitute the MLE for α, τ and θ to calculate the log-likelihood:

```
200*log(tau)+tau*alpha*sum(log(HW4_data)) - 200*tau*alpha*log(theta)-
    sum((HW4_data/theta)^tau)-sum(log(HW4_data)) - 200* log(gamma(alpha ))
```

This gives the log-likelihood as -564.0346
The AIC for the Pareto distribution with $\alpha=9$ is $-571.4705-1=$ -572.4705 , and the BIC is $-571.4705-\frac{1}{2} \log (200)=-574.119658683$
For the transformed gamma distribution, the AIC is $-564.0346-3=$ -567.0346 and the BIC is $-564.0346-\frac{3}{2} \log (200)=-571.98207605$. Thus the transformed gamma distribution is prefered by both AIC and BIC.

Standard Questions

5. An insurance company collects a sample of 3,900 past claims, and attempts to fit a distribution to the claims. Based on experience with other claims, the actuary believes that a log-normal distribution may be appropriate to model these claims. She fits the MLE parameter $\mu=0.4373128$ and $\sigma^{2}=$ 0.3691496 and constructs the following p-p plot of the distribution and data.

(a) How many data points in the sample were more than 2?

We have that $F^{*}(2)=\Phi\left(\frac{\log (2)-0.4373128}{\sqrt{0.3691496}}\right)=0.6631492$. From the graph, we read $F_{n}(2) \approx 0.64$.

So there are approximately $3900 \times 0.36=1404$ samples larger than 2 in the dataset. [In fact, there are 1386 samples larger than 2 in the data set.]
(b) Which of the following statements best describes the fit of the lognormal distribution to the data:
(i) The log-normal distribution assigns too much probability to high values and too little probability to low values.
(ii) The log-normal distribution assigns too much probability to low values and too little probability to high values.
(iii) The log-normal distribution assigns too much probability to tail values and too little probability to central values.
(iv) The log-normal distribution assigns too much probability to central values and too little probability to tail values.
Justify your answer.
We see that $F_{n}(x)>F^{*}(x)$ for $0.08<F^{*}(x)<0.57$ and $F_{n}(x)<F^{*}(x)$ for $0.57<F^{*}(x)<0.94$. Thus suggests that $F^{*}(x)$ grows much faster than $F_{n}(x)$ between these values, so (iv) F^{*} assigns too much probability to central values, and too little to tail values. [However, the very extreme tails tell a different story, so you could argue for (iii)]
(c) Which of the following plots shows $D(x)=F^{*}(x)-F_{n}(x)$ for this model on this data? Justify your answer.

Since $F^{*}(x)<F_{n}(x)$ for smaller (but not very small) values of x and $F^{*}(x)>F_{n}(x)$ for larger values, we expect $D(x)$ to be negative for small values of x and positive for larger values of x. Only (i) shows this pattern, so (i) must be the correct plot.

