
ACSC/STAT 4703, Actuarial Models II

FALL 2023
Toby Kenney

Homework Sheet 4

Model Solutions

Basic Questions

1. The file HW4_data1.txt contains 200 i.i.d. samples of a random vari-
able. An insurer is trying to model this random variable as following
a Pareto distribution with α = 9, as suggested by data sets from earlier
years. Graphically compare this empirical distribution with the best Pareto
distribution with α = 9. From the data, they find that the MLE for θ is
θ = 52.61. Include the following plots:

(a) Comparisons of F (x) and F ∗(x)

### Fnx − count propor t ion o f ob s e rva t i on s l e s s than x .
x<−s e q l e n (10000)∗0 .0035
theta <−52.61
Fx<−rowMeans ( x%∗%t ( rep (1 ,200))> rep (1 ,10000)%∗% t (HW4 data ) )
### Actual ly , can use Fx<−rowMeans (x>rep (1 ,10000)%∗% t (HW4 data ) )
### Because R repea t s v e c to r s when comparing matr i ce s o f d i f f e r e n t s i z e s .

### Adjust margins to a l low l a r g e r a x i s l a b e l s .
par (mar=c ( 4 , 5 , 1 , 1 ) )
### Plot e m p i r i c a l cd f
p l o t (x , Fx , type=’ l ’ , y lab=expr e s s i on (F [ n ] ( x ) ) , cex . a x i s =1.5 , cex . lab =1.5)

### Plot model cd f
po in t s (x ,1−( theta /( theta+x ) )ˆ9 , c o l=”red ” , type=’ l ’ )
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(b) Comparisons of f(x) and f∗(x)

### Use bu i l t −in h i s t func t i on
### Since I s e t unequal breaks , p r o b a b i l i t y=TRUE i s unnecessary .
h i s t (HW4 data , p r o b a b i l i t y=TRUE, breaks=c (0 , 1 , 4 , 8 , 15 , 30 ) , cex . a x i s =2, cex . lab =2, ylim=c ( 0 , 0 . 1 8 ) )

### The d e f a u l t even ly spaced breaks cover up the smal l f i r s t bar , and
### produce some bars based on a very smal l number o f po in t s .

### plo t the model dens i ty on the same graph .
po in t s (x ,9∗52 .61ˆ9/(52 .61+ x )ˆ10 , type=’ l ’ , c o l=”red ”)
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(c) A plot of D(x) against x.

### Adjust margins to a l low l a r g e r a x i s l a b e l s .
par (mar=c ( 4 , 5 , 1 , 1 ) )
### Plot e m p i r i c a l cd f
p l o t (x ,1−( theta / theta+x )ˆ alpha−Fx , type=’ l ’ , y lab=expr e s s i on (D( x ) ) , cex . a x i s =1.5 , cex . lab =1.5)

### Plot model cd f
a b l i n e (h=0)
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(d) A p-p plot of F (x) against F ∗(x).

Fstar<−1−(theta /( theta+s o r t (HW4 data ) ) ) ˆ 9
Fstar repeat<−c (0 , rep ( Fstar , each =2) ,1)
Fn lower upper<−rep ( c (0 , s e q l e n (n)/n ) , each=2)

### Adjust margins to a l low l a r g e r a x i s l a b e l s .
par (mar=c ( 4 , 5 , 1 , 1 ) )
### Plot e m p i r i c a l cd f
p l o t ( Fn lower upper , Fs ta r r epeat , type=’ l ’ , y lab=expr e s s i on ( paste (F, ”∗” ) ( x ) ) , x lab=expr e s s i on (F [ n ] ( x ) ) , cex . a x i s =1.5 , cex . lab =1.5)

### Plot model cd f
a b l i n e (0 , 1 , c o l=”red ”)
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2. For the data in HW4_data1.txt, calculate the following test statistics for
the goodness of fit of the Pareto distribution with α = 9 and θ estimated
by MLE:

(a) The Kolmogorov-Smirnov test.

Using the following code:

HW4 data<−read . t a b l e (”HW4 data1 . txt ”)
HW4 sorted<−s o r t (HW4 data [ [ 1 ] ] )
n<−l ength ( HW4 sorted )
theta <−52.61

Fstar i<−1−(theta /( theta+HW4 sorted ) )ˆ9 # Model CDF
Fn . plus<−s e q l e n (n)/n # e m p i r i c a l CDF above
Fn . minus<−( s e q l e n (n)−1)/n # e m p i r i c a l CDF below

KS<−max( c (Fn . plus−Fstar i , Fstar i −Fn . minus ) )

the Kolmogorov-Smirnov statistic is 0.1281354, attained at the sample
x = 1.42.

(b) The Anderson-Darling test.

We use the following code:
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200∗(sum ( ( ( 2 0 0 : 0 ) / 2 0 0 ) ˆ 2∗ ( c (0 , l og (1− F s t a r i ))−c ( l og (1− F s t a r i [ s e q l e n ( 2 0 0 ) ] ) , 0 ) ) ) +
sum ( ( ( 1 : 2 0 0 ) / 2 0 0 ) ˆ 2∗ ( c ( l og ( F s t a r i [ s e q l e n (199)+1]) ,0) − l og ( F s t a r i ))) −1)

This gives the Anderson-Darling statistic as 3.671391.

(c) The chi-square test, dividing into the intervals 0–1,1–5,5–10 and more
than 10.

The probability of the interval [a, b] is
(

θ
θ+a

)9
−
(

θ
θ+b

)9
. The expected

number of observations are 200 times this. We use the following R code
to make a table.

cut . Surv<−c ( ( theta /( theta+c ( 0 , 1 , 5 , 1 0 ) ) ) ˆ 9 , 0 )
Obs . f r eq<−t a b l e ( cut (HW4 data , breaks=c (0 , 1 , 5 , 10 , 1000 ) , r i g h t=FALSE))# Observed f r e q u e n c i e s
Exp . f req <−200∗( cut . Surv [−5]− cut . Surv [ −1]) #Expected Frequenc ie s
cbind (Obs . f r eq , Exp . f req , ( Obs . f r eq −Exp . f r e q )ˆ2/Exp . f r e q )
sum ( ( Obs . f req −Exp . f r e q )ˆ2/Exp . f r e q )

This gives the following table:

Interval E O (O−E)2

E

[0, 1) 31.17668 13 10.5973950
[1, 5) 80.48201 94 2.2705190
[5, 10) 46.57257 56 1.9083431
[10,∞) 41.76874 37 0.5444475
Total 15.3207

The Chi-squared statistic is 15.3207.

3. For the data in HW4_data1.txt, perform a likelihood ratio test to deter-
mine whether a Pareto distribution with fixed α = 9, or a generalised
Pareto distribution with α, τ and θ freely estimated is a better fit for the
data. [For the generalised Pareto distribution, the MLE is α = 5.6701,
τ = 1.86747 and θ = 15.89494.]

The log-likelihood is given by

200∑
i=1

log(Γ(α+τ))−log(Γ(α))−log(Γ(τ))+α(log(θ))+(τ−1) log(xi)−(α+τ) log(xi+θ)

We calculate this for the two parameter values
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alpha<−5.6701
tau<−1.86747
theta <−15.89494
200∗( l og (gamma( alpha+tau))− l og (gamma( alpha ))− l og (gamma( tau ))+ alpha ∗ l og ( theta ))+

( tau −1)∗sum( log (HW4 data))−( alpha+tau )∗sum( log ( theta+HW4 data ) )

Gives the log-likelihoods −559.8156 and −571.4705 respectively. Thus
the log-likelihood ratio is 2(−559.8156− (−571.4705)) = 23.3098. This is
compared to a chi-squared distribution with two degrees of freedom, so
the critical value, at the 5% significance level, is 5.991465, so we reject
α = 9, τ = 1.

4. For the data in HW4_data1.txt, use AIC and BIC to choose between a
Pareto distribution with α = 9 for the data and a transformed gamma
distribution. [The MLE for the transformed gamma distribution is α =
0.883801, τ = 1.304570 and θ = 7.650101.]

The log-likelihood for the transformed gamma distribution is

200∑
i=1

log(τ) + τα(log(xi)− log(θ))−
(xi
θ

)τ
− log(xi)− log(Γ(α))

We substitute the MLE for α, τ and θ to calculate the log-likelihood:

200∗ l og ( tau)+tau∗ alpha ∗sum( log (HW4 data))−200∗ tau∗ alpha ∗ l og ( theta )−
sum ( ( HW4 data/ theta )ˆ tau)−sum( log (HW4 data))−200∗ l og (gamma( alpha ) )

This gives the log-likelihood as −564.0346

The AIC for the Pareto distribution with α = 9 is −571.4705 − 1 =
−572.4705, and the BIC is −571.4705− 1

2 log(200) = −574.119658683

For the transformed gamma distribution, the AIC is −564.0346 − 3 =
−567.0346 and the BIC is −564.0346− 3

2 log(200) = −571.98207605. Thus
the transformed gamma distribution is prefered by both AIC and BIC.

Standard Questions

5. An insurance company collects a sample of 3,900 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the actuary believes that a log-normal distribution may be appropriate to
model these claims. She fits the MLE parameter µ = 0.4373128 and σ2 =
0.3691496 and constructs the following p-p plot of the distribution and
data.
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(a) How many data points in the sample were more than 2?

We have that F ∗(2) = Φ
(

log(2)−0.4373128√
0.3691496

)
= 0.6631492. From the graph,

we read Fn(2) ≈ 0.64.
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So there are approximately 3900 × 0.36 = 1404 samples larger than 2 in
the dataset. [In fact, there are 1386 samples larger than 2 in the data set.]

(b) Which of the following statements best describes the fit of the log-
normal distribution to the data:

(i) The log-normal distribution assigns too much probability to high values
and too little probability to low values.

(ii) The log-normal distribution assigns too much probability to low values
and too little probability to high values.
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(iii) The log-normal distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The log-normal distribution assigns too much probability to central
values and too little probability to tail values.

Justify your answer.

We see that Fn(x) > F ∗(x) for 0.08 < F ∗(x) < 0.57 and Fn(x) < F ∗(x)
for 0.57 < F ∗(x) < 0.94. Thus suggests that F ∗(x) grows much faster
than Fn(x) between these values, so (iv) F ∗ assigns too much probability
to central values, and too little to tail values. [However, the very extreme
tails tell a different story, so you could argue for (iii) ]

(c) Which of the following plots shows D(x) = F ∗(x) − Fn(x) for this
model on this data? Justify your answer.

(i) (ii) (iii)
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Since F ∗(x) < Fn(x) for smaller (but not very small) values of x and
F ∗(x) > Fn(x) for larger values, we expect D(x) to be negative for small
values of x and positive for larger values of x. Only (i) shows this pattern,
so (i) must be the correct plot.
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