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Toby Kenney

Homework Sheet 1
Model Solutions

Basic Questions

. An insurance company is developing a new policy. The policy considers 4 states: Employed, On leave, Retired,
and Dead. The transition diagram is shown below:

Departed‘ ’ Retz’red’\—>1 Dead‘

Which of the following sequences of transitions are possible? (Indicate which parts of the transition sequence
are not possible if the sequence is not possible.)

(i) Employed— Departed—On leave—Dead
Impossible — transitions from “Departed” to “On leave” are not permitted.
(i) Employed—Departed—Dead

Impossible — transitions from “Departed” to “Dead” are not permitted.

(iii) Employed—On leave—FEmployed— Retired

Possible.

(iv) Employed—On leave—Dead— Retired

Impossible — transitions from “Dead” to “Retired” are not possible.
(v) Employed—On leave— Retired— Departed

Impossible — transitions from “Retired” to “Departed” are not posssible.

. Consider a permanent disability model with transition intensities

pot = 0.004 + 0.000003
p2? = 0.001 — 0.0000012
pa? = 0.002 + 0.000004x

where State 0 is employed, State 1 is retired and State 2 is dead.
(a) Calculate the probability that an employed individual aged 31 is still employed at age 44.

The rate of exit from state 0 is 0.005 + 0.000002z, so the probability of remaining in that state from age 31
to age 44 is
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(b) Calculate the probability that an employed individual aged 31 is dead by age 42.

There are two ways for this to happen: the individual can die directly from employment, or the individual
can retire first. The probability that the individual is still employed ¢ years later is
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Now the probability that the individual dies directly from the employed state during the next 11 years is
therefore
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Conditional on the individual becoming disabled after ¢ years, the probability of surviving to age 42 is
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Therefore the probability that the individual becomes disabled and then dies before age 42 is
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3. Under a disability income model with transition intensities

pdt = 0.001
pl = 0.002
pd? = 0.003
pl? =0.005

calculate the probability that a healthy individual dies within the next / years. [State 0 is healthy, State 1 is
sick and State 2 is dead.]

We sum over the number of transitions to or from the sick state before death. The probability of direct death
during 4 years is

4 4 _ ,—0.016
/ 0.003¢70-004¢ ¢ — [—8'88250-00‘“} = w =0.01190451
0 . 0



If the life becomes disabled at time ¢, then the probability of dying within the 4 years without recovering is

4 - -
/4 0.005¢0-007s 7o — _0-0056—0.0075 _ 5(e” 00T — 7 00%)
e 0.007 7

t

The total probability of becoming disabled then dying within the 4 years is therefore
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The probability of becoming sick, recovering then dying all within 4 years is given by
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Other terms are negligible, so the total probability is

0.01190451 + 0.0001133534 + 6.304779 x 10~'* = 0.01201786



4. Under a critical illness model with transition intensities

pdt = 0.001
1Y% = 0.001
pi? =0.005

calculate the premium for a 5-year policy with premiums payable continuously while the life is in the healthy
state, which pays a death benefit of $130,000 upon entry into state 2, and a benefit of $50,000 upon entry into
state 1, sold to a life in the healthy state (state 0). The interest rate is 6 = 0.04 [State 0 is healthy, State 1 is
sick and State 2 is dead.]

The rate of exit from state 0 is 0.001 + 0.001 = 0.002, so
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For the death benefits, there are two ways the death benefit can be paid out — the life can directly die from
the healthy state, or they can transition to the critically ill state first and then die. This gives
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The total EPV of the benefit is therefore 130000 x 0.004564035+ 50000 x 0.004509899 = $818.82. The premium

is therefore % = $181.56.

. A whole life insurance policy can end either through death or withdrawl. The transition intensities are

pt = 0.002 + 0.000003z
192 = 0.001 + 0.000004z

Calculate the probability that an individual aged 43 withdraws from the policy before age 64. [State 0 is healthy,
State 1 is withdrawn and State 2 is dead.]

The rate of leaving State 0 is 0.003+0.000007x. The probability of remaining in State 0 for ¢ years is therefore
given by
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The probability is given by
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Standard Questions

6. An insurance company is developing a new model for transition intensities in a disability income model. Under
these transition intensities it calculates

Ags = 0.18 A5 =0.20 A0 =031
ag) = 17.47 @y =17.33 ay =0.17
age = 0.84 ayy = 0.71 Ty = 13.42

599 = 0.919 P9 = 0.026 §=0.04

Calculate the premium for a 5-year policy for a life aged 39, with continuous premiums payable while in the

healthy state, which pays a continuous benefit while in the sick state, at a rate of $40,000 per year, and pays
a death benefit of $520,000 immediately upon death.



The EPV of the death benefit is

5200004 o5 = 520000 (g — e~ 00 (5p00A45 +5 AL ))

= 520000 (0.18 — 7% (0.919 x 0.20 + 0.026 x 0.31))
= $11,917.53

The EPV of the disability benefit is
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= 40000 (0.84 — " (0.919 x 0.71 4 0.026 x 13.42))

= $804.59
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= 4.427054

The annual rate of premium is therefore

11917.53 4+ 804.59

= $2,873.72
4.427054 52,8737




