
ACSC/STAT 4720, Life Contingencies II
FALL 2015
Toby Kenney

Sample Midterm Examination
Model Solutions

This Sample examination has more questions than the actual midterm, in order to cover a wider
range of questions. Estimated times are provided after each question to help your preparation.

1. An insurance company is considering a new policy. The policy includes states with the fol-
lowing state diagram:
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Which of the following sequences of transitions are possible? (Indicate which parts of the
transition sequence are not possible if the sequence is not possible.)

(i) Employed—Disabled—Retired—Dead

This is not possible, since it is impossible to transition from Disabled to Retired

(ii) Employed—On Leave—Retired—Dead

This is possible.

(iii) Employed—Retired—On Leave—Dead

This is not possible, since it is impossible to transition from Retired to On Leave.

(iv) Employed—On Leave—Employed—Retired—Dead

This is possible.

2. Consider a permanent disability model with transition intensities

µ01
x = 0.002 + 0.000005x

µ02
x = 0.001 + 0.0000004x2

µ12
x = 0.003 + 0.000004x

where State 0 is healthy, State 1 is permanently disabled and State 2 is dead. Write down an
expression for the probability that an individual aged 29 is alive but permanently disabled at
age 56. [You do not need to evaluate the expression, but should perform basic simplifications
on it.]

The probability that the individual is in State 1 after 27 years is
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27p
01
29 =

∫ 27

0
tp

00
29µ

01
29+t27−tp

11
29+t dt

=

∫ 27

0

e−
∫ t
0
(0.003+0.000005(29+s)+0.0000004(29+s)2) ds(0.002 + 0.000005(29 + t))e−

∫ 27
t

(0.003+0.000004(29+s)) ds dt

=

∫ 27

0

e−
∫ t
0
(0.003+0.000145+0.000005s+0.0003364+0.0000232s+0.0000004s2) ds(0.002 + 0.000005(29 + t))e−

∫ 27
t

(0.003+0.000116+0.000004s) ds dt

=

∫ 27

0

e−
∫ t
0
(0.0034814+0.0000282s+0.0000004s2) ds(0.002 + 0.000005(29 + t))e−

∫ 27
t

(0.003116+0.000004s) ds dt

=

∫ 27

0

e−(0.0034814t+0.0000141t2+ 0.0000004
3 t3) ds(0.002 + 0.000005(29 + t))e−(0.003116(27−t)+0.000002(272−t2)) dt

=

∫ 27

0

e−(0.0034814t+0.0000141t2+ 0.0000004
3 t3) ds(0.002 + 0.000005(29 + t))e−(0.003116(27−t)+0.000002(272−t2)) dt

=

∫ 27

0

e−(0.0034814t+0.0000141t2+ 0.0000004
3 t3) ds(0.002 + 0.000005(29 + t))e−(0.08559−0.003116t−0.000002t

2) dt

=

∫ 27

0

(0.002 + 0.000005(29 + t))e−(0.08559+0.0003654t+0.0000121t2+ 0.0000004
3 t3) ds dt

3. A disability income model has transition intensities

µ01
x = 0.002

µ10
x = 0.001

µ02
x = 0.002

µ12
x = 0.004

State 0 is healthy, State 1 is sick and State 2 is dead. Three actuaries calculate different
values for the transition probabilities and benefit values. Which one has calculated plausible
values? Justify your answer by explaining what is impossible about the values calculated by
the other two actuaries.

Value Actuary I Actuary II Actuary III

2p
(00)
37 0.992036 0.992036 0.992036

2p
(01)
37 0.003960 0.003968 0.003964

4p
(01)
37 0.007857 0.007857 0.007857

4p
(02)
37 0.015857 0.008000 0.008000

4p
(12)
37 0.008000 0.015857 0.015857

2p
(01)
39 0.003960 0.003968 0.003964

2p
(11)
39 0.992054 0.992054 0.990054

We have that 4p
(01)
37 =2 p

(00)
37 ×2 p

(01)
39 +2 p

(01)
37 ×2 p

(11)
39 . For the numbers in the table, this

gives
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0.007857 = 0.992036× 0.003960 + 0.003960× 0.992054 = 0.007857

0.007857 = 0.992036× 0.003968 + 0.003968× 0.992054 = 0.007873

0.007857 = 0.992036× 0.003964 + 0.003964× 0.990054 = 0.007857

So the second actuary’s calculations cannot be right. Furthermore, since µ02
x < µ12

x for all
x, we should have 4p

02
37 <4 p

12
37, which rules out the first actuary’s calculations. This means

that only Actuary III’s calculations might be correct. [Indeed these are the correct values.]

4. A disability income model has the following four states:

State Meaning
0 Healthy
1 Sick
2 Accidental Death
3 Other Death

The transition intensities are:

µ01
x = 0.001

µ02
x = 0.002

µ03
x = 0.001

µ10
x = 0.002

µ12
x = 0.001

µ13
x = 0.003

You calculate that the probability that the life is healthy t years from the start of the policy
is 0.2113249e−0.006732051t + 0.7886751e−0.003267949t, and the probability that the life is sick t
years from the start of the policy is 0.2886752e−0.003267949t − 0.2886752e−0.006732051t.

Calculate the premium for a 5-year policy with premiums payable continuously while the life
is in the healthy state, which pays no benefits while the life is in the sick state, but pays a
benefit of $200,000 in the event of accidental death and a benefit of $100,000 in the event of
other death. The interest rate is δ = 0.03.

We calculate

ax:5| =

∫ 5

0

e−0.03t(0.2113249e−0.006732051t + 0.7886751e−0.003267949t) dt

=

∫ 5

0

0.2113249e−0.036732051t dt+

∫ 5

0

0.7886751e−0.033267949t) dt

=
0.2113249

0.036732051
(1− e−0.036732051×5) +

0.7886751

0.033267949
(1− e−0.033267949×5)

= 4.598130
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The EPV of the benefits to lives who die accidentally from State 0 are given by

200000

∫ 5

0

0.002(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 400

∫ 5

0

(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 400× 4.598130

= 1839.25

The EPV of the benefits to lives who die otherwise from State 0 are given by

100000

∫ 5

0

0.001(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 100

∫ 5

0

(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 100× 4.598130

= 459.81

The EPV of the benefits to lives who die accidentally from State 1 are given by

200000

∫ 5

0

0.001(0.2886752e−0.003267949t − 0.2886752e−0.006732051t)e−0.03t dt

= 200

∫ 5

0

0.2886752e−0.033267949t − 0.2886752e−0.036732051t) dt

=
57.73504

0.033267949
(1− e−5×0.033267949)− 57.73504

0.036732051
(1− e−5×0.036732051)

= 2.226627

The EPV of the benefits to lives who die otherwise from State 1 are given by

100000

∫ 5

0

0.003(0.2886752e−0.003267949t − 0.2886752e−0.006732051t)e−0.03t dt

= 300

∫ 5

0

0.2886752e−0.033267949t − 0.2886752e−0.036732051t) dt

= 3.339940

The total EPV of benefits is therefore 1839.25 + 459.81 + 2.23 + 3.34 = $2, 304.63.

The annual rate of premium is 2304.63
4.598130 = $501.21.
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5. Under a certain model for transition intensities in a critical illness model, with the following
transition diagram:

0 Healthy //

((PPPPPPPPPPPP 1 Critically Ill

��
2 Dead

you calculate:

5p
00
41 = 0.866102 5p

01
41 = 0.0542667 5p

02
41 = 0.0796309

a0041 = 13.5501 a0141 = 2.48302 a0241 = 8.96688

a0,046 = 13.1355 a0,146 = 2.49464 a0,246 = 9.36984

a1,146 = 13.2984 a1,246 = 11.7016

A
01

41 = 0.196752 A
02

41 = 0.358682 A
01

46 = 0.202971

A
02

46 = 0.374801 A
12

46 = 0.468071

where 0 is healthy, 1 is critically ill, and 2 is dead. Calculate the premium for a 5-year policy
for a life aged 41, with continuous premiums payable while in the healthy state, which pays a
benefit $280,000 immediately upon death in the case of death directly from the healthy state
and a benefit of $190,000 upon entry to the critically ill state, followed by a further benefit of
$140,000 upon death after diagnosis of critical illness. [Hint: You need to separate the death
benefits into two cases — cases where the life is critically ill first, and cases where the life is
not critically ill first. You can calculate the value for cases where the life is not critically ill
first by calculating the value of a payment upon first exit from State 0, which can be calculated
from a00

41:5|.

We first calculate a00
41:5| = a0041 − 0.866102a0046e

−0.2 = 13.5501 − 0.866102 × 13.1355e−0.2 =

4.23566

The EPV of the critical illness benefits is given by calculating A
01

41:5| = A
01

41−5 p
00
41e
−0.2A

01

46 =

0.196752 − 0.866102 × 0.202971e−0.2 = 0.05282438. The EPV of the critical illness benefits
is 0.05282438× 190000 = 10036.63.

The EPV of death benefits is harder to calculate, since the death benefits are reduced if the

individual becomes critically ill before death. We have that A
02

41:5 = A
02

41−0.866102e−0.2A
02

46−
0.0542667e−0.2A

12

46 = 0.358682−0.866102e−0.20.374801−0.0542667e−0.20.468071 = 0.1137053.

We can solve the problem of what proportion of these are critically ill first by considering
the value of a payment immediately upon any exit from the healthy state. This is given by
1−δa0041 = 1−0.04×13.5501 = 1−0.542004 = 0.457996. Subtracting the value of payments for
entry to the critically ill state gives the EPV of payments for death directly from the healthy
state as 0.457996−0.196752 = 0.261244 and for payments for death directly from the healthy
state for individuals aged 46, we get 1− δa0046 = 1− 0.04× 13.1355 = 1− 0.52542 = 0.47458,
and 0.47458−0.202971 = 0.271609. Total payments from direct death are therefore given by
0.261244− 0.866102e−0.2 × 0.271609 = 0.06864488

Total payments from deaths that are critically ill first are therefore 0.1137053−0.06864488 =
0.04506041.
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The total EPV of death benefits is therefore 0.06864488× 280000 + 0.04506041× 140000 =
25529.02.

The total EPV of all benefits is therefore, 25529.02+10036.63 = $35, 565.65, so the premium
is 35565.65 = $8, 396.72.

6. The following is a multiple decrement table giving probabilities of surrender (decrement 1)
and death (decrement 2) for a life insurance policy:

x lx d
(1)
x d

(2)
x

49 10000.00 235.54 1.46
50 9763.00 222.44 1.55
51 9539.01 210.28 1.65
52 9327.08 198.99 1.77

A life insurance policy has a death benefit of $400,000 payable at the end of the year of death.
Premiums are payable at the beginning of each year. Calculate the premium for a 4-year
annual policy sold to a life aged 49 if there is no-payment to policyholders who surrender
their policy, and the interest rate is i = 0.06.

The expected death benefit isA02
49:4| = 0.000146(1.06)−1+0.000155(1.06)−2+0.000165(1.06)−3+

0.000177(1.06)−4 = 0.0005544231, so 400000 × 0.0005544231 = $221.77. a00
49:4| = 1 +

0.9763(1.06)−1 + 0.953901(1.06)−2 + 0.932708(1.06)−3 = 3.553126, so the annual premium is
221.77

3.553126 = $62.42.

7. Update the multiple decrement table below

x lx d
(1)
x d

(2)
x

58 10000.00 176.04 2.68
59 9823.96 167.67 2.88
60 9656.29 159.84 3.10
61 9496.46 152.50 3.34
62 9343.96 145.62 3.60
63 9198.34 139.16 3.89

with the following mortality probabilities

x lx dx
58 10000.00 1.81
59 9998.19 1.92
60 9996.27 2.04
61 9994.22 2.18
62 9992.05 2.32
63 9989.73 2.47

[The first decrement is surrender, the second is death.] Using:

(a) UDD in the multiple decrement table.

Under UDD in the multiple decrement table, the relation between single decrements and
multiple decrements is.

1− q1∗ = (1− q01 − q02)
q01

q01+q02

1− q2∗ = (1− q01 − q02)
q02

q01+q02
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We therefore find that the individual decrement probabilities for surrender are

x q∗1x
58 0.017342321274
59 0.016781677242
60 0.016239569853
61 0.015717162596
62 0.0152112926
63 0.015132032898

Now we update the table with these surrender probabilities and the new death probabilities.
The new multiple decrement probabilities are the solution to

1− q1∗ = (1− q01 − q02)
q01

q01+q02

1− q2∗ = (1− q01 − q02)
q02

q01+q02

Which are given by

1− q01 − q02 = (1− q∗1)(1− q∗2)

q01

q02
=

log(1− q∗1)

log(1− q∗2)

This gives us

x p00x
58 0.982479817686
59 0.983029510665
60 0.983559668135
61 0.98406813965
62 0.984560054641
63 0.984624454627

The new multiple decrement table is therefore

x lx d
(1)
x d

(2)
x

10000.00 173.39 1.81
9824.80 164.85 1.89
9658.07 156.81 1.97
9499.28 149.27 2.07
9347.94 142.16 2.17
9203.61 139.24 2.28

(b) UDD in the independent decrements.

For UDD in the individual decrement tables, the decrement probabilities are related by:
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q01 + q02 = 1− (1− q∗1)(1− q∗2)

q01

q02
=
q∗1

q∗2(
1− q02

q01
q∗1
)

(1− q∗1) = 1− q01 − q02

q02

q01
(q∗1)2 −

(
1 +

q02

q01

)
q∗1 + q01 + q02 = 0

q∗1 =
q01 + q02 −

√
(q01 + q02)2 − 4q01q02(q01 + q02)

2q02

We therefore find that the individual decrement probabilities for surrender are

x q∗1x
58 0.01760865
59 0.01707704
60 0.01656770
61 0.01607883
62 0.01561033
63 0.01516079

Now we update the table with these surrender probabilities and the new death probabilities.
The new multiple decrement probabilities are given by

q01 + q02 = 1− (1− q∗1)(1− q∗2)

q01

q02
=
q∗1

q∗2

q02 =
1− (1− q∗1)(1− q∗2)(

1 + q∗1

q∗2

)
= q∗2

(
q∗1 + q∗2 − q∗1q∗2

q∗2 + q∗1

)

The new multiple decrement table is therefore

x lx d
(1)
x d

(2)
x

10000.00 176.05 1.81
9822.14 167.70 1.89
9652.55 159.89 1.97
9490.69 152.57 2.07
9336.05 145.71 2.17
9188.18 139.27 2.27

8. The mortalities for a husband and wife (whose lives are assumed to be independent) aged 62
and 53 respectively, are given in the following tables:
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x lx dx
62 10000.00 5.31
63 9994.69 5.76
64 9988.93 6.25
65 9982.68 6.79
66 9975.89 7.37
67 9968.52 8.01

x lx dx
53 10000.00 3.03
54 9996.97 3.25
55 9993.72 3.48
56 9990.24 3.74
57 9986.49 4.03
58 9982.47 4.33

The interest rate is i = 0.03.

(a) They want to purchase a 5-year joint life insurance policy with a death benefit of $2,500,000.
Annual premiums are payable while both are alive. Calculate the net premium for this policy
using the equivalence principle.

The EPV of the premium is given by ä62,53:5| = 1+0.999469×0.999697(1.03)−1 +0.998893×
0.999372(1.03)−2 + 0.998268× 0.999024(1.03)−3 + 0.997589× 0.998649(1.03)−4 = 4.708838

We also calculate

A62,53:5| = (1−0.999469×0.999697)(1.03)−1+(0.999469×0.999697−0.998893×0.999372)(1.03)−2+

(0.998893 × 0.999372 − 0.998268 × 0.999024)(1.03)−3 + (0.998268 × 0.999024 − 0.997589 ×
0.998649)(1.03)−4 + (0.997589× 0.998649− 0.996852× 0.998247)(1.03)−5+ = 0.004463484

So the EPV of the benefits is 2500000× 0.004463484 = $11, 158.71, so the premium is

11158.71

4.708838
= $2, 369.74

(b) They want to purchase a 5-year reversionary annuity, which will provide an annuity to
the husband of $60,000 at the end of each year for the 5-year term if the wife is dead and
the husband is alive. Calculate the net annual premium for this policy using the equivalence
principle.

The probability that the wife is dead and the husband is alive at the end of each year is given
in the following table:

Year Probability EPV of payment
1 (1− 0.999697)× 0.999469 = 0.000303 0.000303(1.03)−1 = 0.000294
2 (1− 0.999372)× 0.998893 = 0.000627 0.000627(1.03)−2 = 0.000591
3 (1− 0.999024)× 0.998268 = 0.000974 0.000974(1.03)−3 = 0.000892
4 (1− 0.998650)× 0.997589 = 0.001347 0.001347(1.03)−4 = 0.001197
5 (1− 0.998247)× 0.996852 = 0.001747 0.001747(1.03)−5 = 0.001507

Summing the last column gives a01
63,52:5| = 0.004480903, so the EPV of benefits is 0.004480903×

60000 = $268.85, and the premium is 268.85
4.708838 = $57.10.

(c) They want to purchase a 5-year last survivor insurance policy, with a death benefit of
$120,000,000. Premiums are payable while either life is alive. Calculate the net premium for
this policy using the equivalence principle.

Year Probability Both Dead Probability EPV EPV
of Payment of payment of premium

1 (1− 0.999469)× (1− 0.999697) = 0.000000161 0.000000161 0.000000156 0.9708736
2 (1− 0.998893)× (1− 0.999372) = 0.000000695 0.000000534 0.000000504 0.9425953
3 (1− 0.998268)× (1− 0.999024) = 0.000001690 0.000000995 0.000000911 0.9151401
4 (1− 0.997589)× (1− 0.998649) = 0.000003257 0.000001567 0.000001390 0.8884842
5 (1− 0.996852)× (1− 0.998247) = 0.000005518 0.000002261 0.000001953 0.8626040
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This gives ä62,53:5 = 4.717093 andA62,53:5 = 0.000004913182, so the premium is 0.000004913182×120000000
4.717093 =

$124.99.

9. A husband is 64; the wife is 73. Their lifetables while both are alive, and the lifetable for the
husband if the wife is dead, are given below:

x lx dx
64 10000.00 6.92
65 9993.08 7.49
66 9985.59 8.12
67 9977.48 8.80
68 9968.68 9.55
69 9959.13 10.36

x lx dx
73 10000.00 31.73
74 9968.27 34.69
75 9933.58 37.92
76 9895.66 41.45
77 9854.20 45.30
78 9808.91 49.49

x lx dx
64 10000.00 11.56
65 9988.44 12.56
66 9975.88 13.65
67 9962.23 14.83
68 9947.40 16.12
69 9931.28 17.53

Calculate the probability that the husband survives to the end of the 5-year period. Use the
UDD assumption for handling changes to the husband’s mortality in the event of the wife’s
death.

In the year of the wife’s death, let qa be the probability that the husband dies if the wife is
alive for the whole year, and let qd be the probability that the husband dies if the wife is
dead for the whole year. If the wife’s death occurs at time t, then the husband’s probability
of surviving the year is (1− tqa) 1−qd

1−tqd . The overall probability of the husband surviving the
year if the wife’s death is uniformly distributed is therefore

∫ 1

0

(1− qd)
1− tqa
1− tqd

dt = (1− qd)
∫ 1

0

(
qa
qd
−
(
qa − qd
qd2

)
qd

1− tqd

)
dt

= (1− qd)
(
qa
qd
−
(
qa − qd
qd2

)
log(1− tqd)

)

This gives the following table:

Year P(W Dies) P(H survives P(H survives year) P(H survives Total P(H survives
to start of year) from end of year) 5 years)

1 0.003173 1.000000 0.9990759 9931.28
9988.44 0.003151927

2 0.003469 0.999308 0.9989964 9931.28
9975.88 0.003447638

3 0.003792 0.998559 0.9989091 9931.28
9962.23 0.003770620

4 0.004145 0.997748 0.9988145 9931.28
9947.40 0.004124069

5 0.004530 0.996868 0.9987106 9931.28
9931.28 0.004509989

> 5 0.980891 0.995913 1 1 0.976882098

The total probability that the husband survives the 5 years is therefore 0.003151927 +
0.003447638 + 0.003770620 + 0.004124069 + 0.004509989 + 0.976882098 = 0.9958863.

10. A couple want to receive the following:

• While both are alive, they would like to receive a pension of $90,000 per year.

• If the husband is alive and the wife is not, they would like to receive a pension of $85,000
per year.

• If the wife is alive and the husband is not, they would like to receive a pension of $65,000
per year.
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• When one dies, if the husband dies first, they would like to receive $92,000, if the wife
dies first, they would like to receive $120,000.

• When the second one dies, if it is the husband, they would like to receive a benefit of
$65,000; if it is the wife, they would like to receive a benefit of $93,000.

Construct a combination of insurance and annuity policies that achieve this combination of
benefits.

There are many possible solutions. Below are two of them.

First solution:

• A last survivor annuity for $65,000.

• A life annuity for the husband for $20,000.

• A joint life annuity for $5,000.

• A life insurance policy for $65,000 for the husband.

• A life insurance policy for $93,000 for the wife.

• A joint life insurance policy for $27,000.

This gives the following:

• While both are alive, an annuity of 5000 + 65000 + 20000 = 90, 000.

• While the wife is dead and the husband is alive, an annuity of 65000 + 20000 = 85, 000.

• While the wife is alive and the husband is dead, an annuity of $65, 000.

• If the wife dies first, a death benefit of 93000 + 27000 = $120, 000.

• If the husband dies first, a death benefit of 65000 + 27000 = $92, 000.

• If the wife dies second, a death benefit of $93, 000.

• If the husband dies second, a death benefit of $65, 000.

Second solution:

• A life annuity for the wife for $5,000.

• A life annuity for the husband for $85,000.

• A reversionary annuity for $60,000 while the husband is dead and the wife is alive.

• A last survivor insurance policy for $65,000.

• A life insurance policy for $28,000 for the wife.

• A joint life insurance policy for $92,000.

This gives the following:

• While both are alive, an annuity of 85000 + 5000 = $90, 000.

• While the wife is dead and the husband is alive, an annuity of $85, 000.

• While the wife is alive and the husband is dead, an annuity of $65, 000.

• If the wife dies first, a death benefit of 92000 + 28000 = $120, 000.

• If the husband dies first, a death benefit of $92, 000.

• If the wife dies second, a death benefit of 65000 + 28000 = $93, 000.
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• If the husband dies second, a death benefit of $65, 000.

11. A husband aged 52 and wife aged 66 have the following transition intensities:

µ01
xy = 0.000003y + 0.0000001x

µ02
xy = 0.0000015x+ 0.0000004y

µ03
xy = 0.000042 + 0.000013x+ 0.000019y

µ13
x = 0.000004x

µ23
x = 0.000003y

Which of the following expressions gives the probability that after 7 years, the husband is dead
and the wife is alive? Justify your answer.

(i)
∫ 7

0
e−(0.0014595+0.0020203t+0.0000205t2)(0.00001044 + 0.0000039t) dt

(ii)
∫ 7

0
e−(0.0023614+0.0014475t+0.0000205t2)(0.00001044 + 0.0000019t) dt

(iii)
∫ 7

0
e−(0.0014595+0.0020996t+0.0000170t2)(0.00001044 + 0.0000019t) dt

(iv)
∫ 7

0
e−(0.0009948+0.0020203t+0.0000150t2)(0.00001044 + 0.0000019t) dt

The probability of this is

∫ 7

0
tp

00
52,66µ

02
52+t,66+t7−tp

22
52+t,66+t dt

=

∫ 7

0

e−
∫ t
0
0.0000224(66+s)+0.0000146(52+s)+0.000042 ds(0.0000015(52 + t) + 0.0000004(66 + t))e−

∫ 7
t
0.000003(66+s) ds dt

=

∫ 7

0

e−
∫ t
0
0.0022796+0.0000370s ds(0.0001044 + 0.0000019t)e−

∫ 7
t
0.000198+0.000003s ds dt

=

∫ 7

0

e−(0.0022976t+0.0000185t2)(0.0001044 + 0.0000019t)e−(0.000198(7−t)+0.0000015(49−t2)) dt

=

∫ 7

0

e−(0.0014595+0.0020996t+0.0000170t2)(0.00001044 + 0.0000019t) dt

So the answer is (iii).

12. A life aged 38 wants to buy a 3-year term insurance policy. A life-table based on current-year
mortality is:

x lx dx
38 10000.00 5.00
39 9995.00 5.14
40 9989.86 5.30
41 9984.56 5.47
42 9979.09 5.67
43 9973.42 5.87
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The insurance company uses a single-factor scale function q(x, t) = q(x, 0)(1−φx)t to model
changes in mortality. The insurance company uses the following values for φx:

x φx
38 0.03
39 0.025
40 0.025
41 0.02
42 0.015
43 0.02

Calculate A1
38:3| at interest rate i = 0.06, taking into account the change in mortality.

We have q38 = 0.0005, q39(1 − φ39) = 0.975 × 5.14
9995.00 = 0.00050140070035, q40(1 − φ40)2 =

0.9752 × 5.30
9989.86 = 0.000504342653451. This gives A1

38:3| = 0.0005(1.06)−1 + (1 − 0.0005) ×
0.00050140070035(1.06)−2+(1−0.0005)(1−0.00050140070035)×0.000504342653451(1.06)−2 =
0.00136613361588.

13. The following lifetable applied in 2016:

x lx dx
55 10000.00 10.63
56 9989.37 11.30
57 9978.07 12.02
58 9966.05 12.80
59 9953.25 13.66
60 9939.59 14.60

An insurance company uses the following mortality scale based on both age and year:

t
x 2017 2018 2019 2020 2021 2022
55 0.01 0.015 0.015 0.02 0.02 0.015
56 0.03 0.03 0.025 0.02 0.015 0.02
57 0.02 0.03 0.03 0.025 0.02 0.015
58 0.025 0.03 0.025 0.015 0.015 0.02
59 0.015 0.02 0.015 0.01 0.015 0.01
60 0.02 0.015 0.01 0.015 0.02 0.025

Use this mortality scale to calculate A1
55:4| at interest rate i = 0.03.

For this individual we have

q55 = (1− 0.01)0.001063 = 0.00105237

q56 = (1− 0.03)(1− 0.03)× 11.30

9989.37
= 0.00106434840234

q57 = (1− 0.02)(1− 0.03)(1− 0.03)× 12.02

9978.07
= 0.00111077850125

q58 = (1− 0.025)(1− 0.03)(1− 0.025)(1− 0.015)× 12.80

9966.05
= 0.00116655200405

This givesA1
55:4| = 0.00105237(1.03)−1+(1−0.00105237)

(
0.00106434840234(1.03)−2 + (1− 0.00106434840234)

(
0.00111077850125(1.03)−3 + (1− 0.00111077850125)× 0.00116655200405

))
=

0.00420107324841.
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14. A pensions company has the current mortality scale for 2017:

x φ(x, 2017) dφ(x,t)
dt

∣∣∣
x,t=2017

dφ(x+t,t)
dt

∣∣∣
x,t=2017

51 0.016389776 0.00054272913 −0.0015000971
52 0.018738397 −0.00107674028 0.0012410504
53 0.028229446 0.00120650853 −0.0002976607
54 0.028011768 −0.00109930339 −0.0004183465
55 0.014334489 −0.00194027424 0.0023952205
56 0.016770205 0.00271342277 −0.0053102487

Mortality in 2016 is given in the following lifetable.

x lx dx
51 10000.00 15.29
52 9984.71 16.44
53 9968.27 17.70
54 9950.56 19.09
55 9931.48 20.60
56 9910.88 22.26

The company assumes that from 2030 onwards, we will have φ(x, t) = 0.01 for all x and t.
Calculate q(54, 2018) using the average of age-based and cohort-based effects.

We fit a cubic curve between the known points. For age 54, we have φ(54, 2017 + t) = f(t) =
at3 + bt2 + ct+ d, and we get

f(0) = 0.028011768

f ′(0) = −0.00109930339

f(13) = 0.01

f ′(13) = 0

We solve this to get

d = 0.028011768

c = −0.00109930339

133a+ 132b+ 13c+ d = 0.01

3× 132a+ 2× 13b+ c = 0

133a− 13c− 2d = −0.02a =
13×−0.00109930339 + 2× 0.028011768− 0.02

133
= 0.00000989193988621

b =
0.00109930339− 3× 132 × 0.00000989193988621

2× 13
= −0.000150611928166

This gives f(1) = 0.00000989193988621−0.000150611928166−0.00109930339+0.028011768 =
0.0267717446217.
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For the cohort-based curve, we have φ(53 + t, 2017 + t) = g(t) = ãt3 + b̃t2 + c̃t+ d̃ and we get

g(0) = 0.028229446

g′(0) = −0.0002976607

g(13) = 0.01

g′(13) = 0

We solve this to get

d̃ = 0.028229446

c̃ = −0.0002976607

133ã+ 132b̃+ 13c̃+ d̃ = 0.01

3× 132ã+ 2× 13b̃+ c̃ = 0

133ã− 13c̃− 2d̃ = −0.02ã =
13×−0.0002976607 + 2× 0.028229446− 0.02

133
= 0.0000148335470642

b̃ =
0.0002976607− 3× 132 × 0.0000148335470642

2× 13
= −0.00027780567929

This gives g(1) = 0.0000148335470642− 0.00027780567929− 0.0002976607 + 0.028229446 =
0.0276688131678. Taking the average of the age-based and cohort-based improvement factors,
we get φ(54, 2018) = 0.0267717446217+0.0276688131678

2 = 0.0272202788948. We therefore have

q(54, 2018) = q(54, 2016)(1−φ(54, 2017))(1−φ(54, 2018)) =
19.09

9950.56
(1−0.028011768)(1−0.0272202788948) = 0.00181398595891

15. An insurance company uses a Lee-Carter model and fits the following parameters:

c = −0.6 σk = 1.4 K2017 = −4.83

And the following values of αx and βx:

x αx βx
34 −5.314675 0.2697754
35 −5.234098 0.2504377
36 −5.043921 0.1782635
37 −4.892803 0.2889967
38 −4.637988 0.1460634
39 −4.413315 0.1174245
40 −4.261060 0.2078267

The insurance company simulates the following values of Zt:

t Zt
2018 0.2525295
2019 −0.6276655
2020 −0.6007807
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Using these simulated values, calculate the probability that a life aged exactly 36 at the start
of 2017 dies within the next 4 years.

From the simulated values we have

K2018 = −4.83− 0.6 + 1.4× 0.2525295 = −5.0764587

K2019 = −5.0764587− 0.6 + 1.4×−0.6276655 = −6.5551904

K2020 = −6.5551904− 0.6 + 1.4×−0.6007807 = −7.99628338

This gives us

log(m(36, 2017)) = −5.043921 + 0.1782635×−4.83 = −5.904933705

log(m(37, 2018)) = −4.892803 + 0.2889967×−5.0764587 = −6.35988281199

log(m(38, 2019)) = −4.637988 + 0.1460634×−6.5551904 = −5.59546139747

log(m(39, 2020)) = −4.413315 + 0.1174245×−7.99628338 = −5.35227457776

Under UDD, we have mx = 2qx
2−qx so qx = 2mx

2+mx
. This gives us

q(36, 2017) =
2e−5.904933705

2 + e−5.904933705
= 0.00272225211385

q(37, 2018) =
2e−6.35988281199

2 + e−6.35988281199
= 0.001728074972

q(38, 2019) =
2e−5.59546139747

2 + e−5.59546139747
= 0.00370779834235

q(39, 2020) =
2e−5.35227457776

2 + e−5.35227457776
= 0.00472616844589

The probability that the life survives four years is therefore

(1−0.00272225211385)(1−0.001728074972)(1−0.00370779834235)(1−0.00472616844589) = 0.987175350394

16. An insurance company uses a Lee-Carter model. One actuary fits the following parameters:

c = −0.13 σk = 0.9 K2017 = −1.70 α52 = −4.45 β52 = 0.49

A second actuary fits the parameters

c = −0.14 σk = 0.8 K2017 = −1.40 α52 = −4.94 β52 = 0.37

The insurance company sets its life insurance premiums for 2025 so that under the first
actuary’s model, it has a 95% chance of an expected profit. What is the probability that these
premiums lead to an expected profit under the second actuary’s model?
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Since expected profit is a decreasing function of m(x, t), we need to calculate the probability
under the second actuary’s model that log(m(52, 2025)) is less than the 95th percentile of
the first actuary’s distribution for log(m(52, 2025)).

The first actuary’s model gives log(m(52, 2025)) = −4.45+0.49K2025, where K2025 = −1.70−
0.13×8+0.9(Z2018 +Z2019 +Z2020 +Z2021 +Z2022 +Z2023 +Z2024 +Z2025) ∼ N(−2.74, 6.48).
The 95th percentile of this model is therefore log(m(52, 2025)) = −4.45 + 0.49(−2.74 +
1.96
√

6.48) = −3.34782073046. The second actuary’s model gives log(m(52, 2025)) = −4.94+
0.37K2025, where K2025 = −1.40−0.14×8+0.8(Z2018+Z2019+Z2020+Z2021+Z2022+Z2023+
Z2024 + Z2025) ∼ N(−2.52, 5.12). Under this model log(m(52, 2025)) ∼ N(−5.8724, 5.12 ×
0.372). The probability that log(m(52, 2025)) < −3.34782073046 is therefore

Φ

(
−3.34782073046− (−5.8724)

0.37
√

5.12

)
= Φ(3.01545121813) = 0.998717

17. An insurance company uses a Cairns-Blake-Dowd model with the following parameters:

K
(1)
2017 = −3.29 K

(2)
2017 = 0.38 c(1) = −0.17 c(2) = 0.01

σk1 = 0.5 σk2 = 0.08 ρ = 0.3 x = 47

What is the probability that the mortality for an individual currently (in 2017) aged 39 will
be higher in 2025 than in 2030?

The mortality in 2025 satisfies

log

(
q(47, 2025)

1− q(47, 2025)

)
= K

(1)
2025

while mortality in 2030 satisfies

log

(
q(52, 2030)

1− q(52, 2030)

)
= K

(1)
2030 + 5K

(2)
2030

Since log
(

q
1−q

)
is an increasing function of q, we are asking, what is the probability that

K
(1)
2025 > K

(1)
2030 +5K

(2)
2030. We have that K

(1)
2030 = K

(1)
2025−5×0.17+0.5(Z

(1)
2026 +Z

(1)
2027 +Z

(1)
2028 +

Z
(1)
2029 + Z

(1)
2030) and K

(2)
2030 = K

(2)
2017 + 13 × 0.01 + 0.08(Z

(2)
2018 + · · · + Z

(2)
2030). The probability

that we are interested in is therefore the probability that

−0.85 + 0.5(Z
(1)
2026 + Z

(1)
2027 + Z

(1)
2028 + Z

(1)
2029 + Z

(1)
2030) + 5

(
0.51 + 0.08(Z

(2)
2018 + · · ·+ Z

(2)
2030)

)
< 0

1.7 + 0.5(Z
(1)
2026 + Z

(1)
2027 + Z

(1)
2028 + Z

(1)
2029 + Z

(1)
2030) + 0.4(Z

(2)
2018 + · · ·+ Z

(2)
2030) < 0

We have that Cov(Z
(1)
t , Z

(2)
t ) = 0.3, so Var(0.5Z

(1)
t +0.4Z

(2)
t ) = 0.52+0.42+2×0.3×0.4×0.5 =

0.53. We therefore get that

log

(
q(52, 2030)

1− q(52, 2030)

)
− log

(
q(47, 2025)

1− q(47, 2025)

)
) ∼ N(1.7, 3.91)

The probability that it is less than 0 is therefore Φ
(
−1.7√
3.91

)
= Φ(−0.85972695362) = 0.1949698.
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18. For the following dataset:

0.2 0.2 0.4 0.7 1.8 2.1 2.3 3.0 3.5 3.9 4.1 4.2 4.6 5.1 5.7 6.6

8.2 11.4

Calculate a Nelson-Åalen estimate for the probability that a random sample is more than 2.7.

The Nelson-Åalen estimate for H(2.7) is 2
18 + 1

16 + 1
15 + 1

14 + 1
13 + 1

12 = 0.4719628, so the
survival functions is S(2.7) = e−0.4719628 = 0.6237767.

19. The histogram below is obtained from a sample of 8,000 claims.Histogram of c(rep(400, 794), rep(800, 935), rep(1600, 1356), rep(6000, 2978), rep(15000, 1937))
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Which interval included most claims?

The probability of the first interval is approximately 0.00022× 1000 = 0.22.

The probability of the second interval is approximately 0.00004× 4000 = 0.16.

The probability of the third interval is approximately 0.00007× 5000 = 0.35.

The probability of the first interval is approximately 0.00003× 10000 = 0.30.

Therefore the interval 5000–10000 included most claims.

20. An insurance company collects the following data on insurance claims:

Claim Amount Number of Policies
Less than $5,000 232
$5,000–$20,000 147
$20,000–$100,000 98
More than $100,000 23

The policy currently has no deductible and a policy limit of $100,000. The company wants
to determine how much would be saved by introducing a deductible of $2,000 and a policy
limit of $50,000. Using the ogive to estimate the empirical distribution, how much would the
expected claim amount be reduced by the new deductible and policy limit?

Using the ogive, the current expected claim amount is 232×2500+147×12500+98×60000+23×100000
500 =

$21, 195.00.

Using the ogive, the expected number of claims between 0 and 2000 is 2000
5000×232 = 92.8. The

number of claims above 50000 is 50000
80000 × 98 + 23 = 84.25. The expected claim amount per
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loss is therefore 139.2×1500+147×10500+36.75×33000+84.25×50000
500 = $14, 355.10, so the reduction

is 21195.00− 14355.10 = $6, 839.90.

21. An insurance company collects the following claim data (in thousands):

i di xi ui i di xi ui i di xi ui
1 0 0.8 - 8 0.5 - 5 15 2.0 - 5
2 0 1.3 - 9 1.0 1.2 - 16 2.0 - 10
3 0 - 20 10 1.0 - 15 17 2.0 2.4 -
4 0 4.4 - 11 1.0 1.8 - 18 2.0 - 5
5 0 - 10 12 1.0 - 10 19 2.0 11.6 -
6 0.5 1.4 - 13 1.0 6.3 - 20 5.0 - 15
7 0.5 1.8 - 14 2.0 4.9. - 21 5.0 5.9 -

Using a Kaplan-Meier product-limit estimator:

(a) estimate the probability that a random loss exceeds 3.

yi si ri
0.8 1 8
1.2 1 12
1.3 1 11
1.4 1 10
1.8 2 9
2.4 1 13

So the Kaplan-Meier estimator is S(3) = 7
8 ×

11
12 ×

10
11 ×

9
10 ×

7
9 ×

12
13 = 49

104 = 0.4711538.

(b) Use Greenwood’s approximation to obtain a 95% confidence interval for the probability that
a random loss exceeds 3, based on the Kaplan-Meier estimator, using a normal approximation.

Greenwood’s approximation gives Var(Ŝ(3)) = (Ŝ(3))2
∑6
i=1

si
ri(ri−si) = 0.47115382

(
1

8×7 + 1
12×11 + 1

11×10 + 1
10×9 + 2

9×7 + 1
13×12

)
=

0.01860047.

Using a normal approximation, the confidence interval is 0.4711538 ± 1.96
√

0.01860047 =
[0.2038421, 0.7384655].

(c) Use Greenwood’s approximation to find a log-transformed confidence interval for the prob-
ability that a random loss exceeds 3.

The log-transformed inteval is [Sn(x)
1
U , Sn(x)

1
U ], where U = e

1.96
( √

0.01860047
Sn(x) log(Sn(x))

)
. That is

U = e
1.96

( √
0.01860047

0.4711538 log(0.4711538)

)
= 0.4705326

so the confidence interval is

[0.4711538
1

0.4705326 , 0.47115380.4705326] = [0.2020174, 0.7017985]

22. An insurance company records the following data in a mortality study:
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entry death exit entry death exit entry death exit
51.3 - 58.4 56.5 - 58.2 55.3 - 59.9
54.7 - 59.7 54.7 - 59.8 53.3 59.1
53.8 - 58.5 57.9 - 61.3 56.7 58.4 -
57.3 - 58.3 58.0 - 59.3 52.4 58.9 -
52.8 - 60.6 58.4 - 59.8 57.7 58.8 -
58.7 - 59.5 53.0 - 58.3 58.3 60.4 -
53.3 - 62.4 53.1 - 60.1 58.1 58.4 -

Estimate the probability of an individual currently aged exactly 58 dying within the next year
using:

(a) the exact exposure method.

The exact exposure is 0.4 + 1 + 0.5 + 0.3 + 1 + 0.3 + 1 + 0.2 + 1 + 1 + 1 + 0.6 + 0.3 + 1 + 1 +
1 + 0.4 + 0.9 + 0.8 + 0.7 + 0.3 = 14.7, and there are 4 deaths at age 58, so the hazard rate is
4

14.7 , and the probability of dying is therefore 1− e− 4
14.7 = 0.2382287.

(b) the actuarial exposure method.

The actuarial exposure is 0.4 + 1 + 0.5 + 0.3 + 1 + 0.3 + 1 + 0.2 + 1 + 1 + 1 + 0.6 + 0.3 + 1 +
1 + 1 + 1 + 1 + 1 + 0.7 + 0.9 = 16.2, so the probability of dying is 4

16.2 = 0.2469136.

23. Using the following table:

Age No. at start enter die leave No. at next age
48 26 43 2 13 54
49 54 39 7 17 69
50 69 46 14 28 73
51 73 22 13 44 38

Estimate the probability that an individual aged 49 withdraws from the policy within the next
two years, conditional on surviving to the end of those two years.

Using exact exposure

For age 49, the exact exposure is 54 + 39−7−17
2 = 61.5, and the number of withdrawls is 17,

so the hazard rate is 17
61.5 . For age 50, the exact exposure is 69 + 46−14−28

2 = 71, and the
number of withdrawls is 28, so the hazard rate is 28

71 . The probability of not withdrawing

in the next two years is therefore e−
17

61.5−
28
71 = 0.511305, so the probability of withdrawing

during the next two years is 1− 0.511305 = 0.488695.

Using actuarial exposure

For age 49, the actuarial exposure is 54 + 39−7
2 = 70, and the number of withdrawls is 17, so

the probability of withdrawing is 17
70 . For age 50, the actuarial exposure is 69 + 46−14

2 = 85,
and the number of withdrawls is 28, so the probability of withdrawl is 28

85 . The probability of
not withdrawing in the next two years is therefore 53

70 × 5785 = 0.5164103, so the probability
of withdrawing during the next two years is 1− 0.5164103 = 0.4835897.
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