
8.5 Numerical Evaluation of Probabilities

1
Density of event individual became disabled at time t is

tp
00
27µ

01
27+t 16−tp

11
27+t

so probability is

∫ 16

0

0.003e−0.004te−0.002(16−t)dt = 0.003e−0.032
∫ 16

0

e−0.002tdt =
0.003

0.002
e−0.032(1− e−0.032) = 0.04575237

2
Density of event individual became disabled at time t is

tp
00
32µ

01
32+t 12−tp

11
32+t

We have

tp
00
x = e−

∫ t
0
0.004+0.00003(x+s)ds = e−(0.004+0.00003x)t+0.000015t2

tp
11
x = e−

∫ t
0
0.002+0.00002(x+s)ds = e−(0.002+0.00002x)t+0.00001t2

so probability is

∫ 12

0

(0.001 + 0.00001(32 + t))e−(0.00496t+0.000015t2)e−(0.00264(12−t)+0.00001(12−t)2)dt

=

∫ 12

0

(0.001 + 0.00001(32 + t))e−(0.00496t+0.000015t2)e−((0.00264+0.00002t)(12−t)+0.00001(12−t)2)dt

=

∫ 12

0

(0.001 + 0.00001(32 + t))e−(0.03312+0.0028t+0.000005t2)dt

=

∫ 12

0

(0.001 + 0.00001(32 + t))e−
((t+28)2)−121.6

20000 dt

=
e−

121.6
20000

10000

∫ 12

0

(132 + t)e−
((t+28)2)

20000 dt

=
e−

121.6
20000

10000

∫ 12

0

(104 + (t+ 28))e−
((t+28)2)

20000 dt

=
104e−

121.6
20000

10000

∫ 12

0

e−
((t+28)2)

20000 dt+
e−

121.6
20000

10000

[
−10000e−

((t+28)2)
20000

]12
0

=
104

100
e−

121.6
20000

√
2π

(
Φ

(
28

100

)
− Φ

(
16

100

))
+ e−

121.6
20000

(
e−

282

20000 − e− 402

20000

)
= 0.1250398
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We have

tp
00
x = e−0.0004t

tp
11
x = e−0.00023t

Probability this happens from 1 transition:

∫ 16

0
tp

00
27µ

01
27+t (16−t)p

11
27+t dt

=

∫ 16

0

0.0003e−0.0004te−0.00023(16−t) dt

= 0.0003e−0.00368
∫ 16

0

e−0.00017t dt

=
0.0003

0.00017
e−0.00368

(
1− e−0.00272

)

Probability this happens from 3 transitions:

∫ 16

0

∫ 16

s

∫ 16

t
sp

00
27µ

01
27+s (t−s)p

11
27+sµ

10
27+t u−tp

00
27+tµ

01
27+u (16−u)p

11
27+u du dt ds

=

∫ 16

0

∫ 16

s

∫ 16

t

0.00032 × 0.00003e−0.0004(s+u−t)e−0.00023(16−u+t−s) du dt ds

= 0.00032 × 0.00003e−0.00368
∫ 16

0

∫ 16

s

∫ 16

t

e−0.00017(s+u−t) du dt ds

Making the substitution w = s+ u− t, this becomes (noting that |J | = 1):

0.00032 × 0.00003e−0.00368
∫ 16

0

∫ w

0

∫ 16+s−w

s

e−0.00017w dt ds dw

0.00032 × 0.00003e−0.00368
∫ 16

0

e−0.00017w
∫ w

0

∫ 16+s−w

s

1 dt ds dw

0.00032 × 0.00003e−0.00368
∫ 16

0

w(16− w)e−0.00017w dw

In general, the probability that this happens from 2n+ 1 transitions is

0.0003 (0.00003× 0.0003)
n
e−0.00368

∫ 16

0

wn(16− w)n

(n!)2
e−0.00017w dw
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The total probability of this is therefore

∞∑
n=0

0.0003 (0.00003× 0.0003)
n
e−0.00368

∫ 16

0

wn(16− w)n

(n!)2
e−0.00017w dw

= 0.004775872

4
We have that 4p

(01)
37 =2 p

(00)
37 ×2 p

(01)
39 +2 p

(01)
37 ×2 p

(11)
39 . For the numbers in the table, this gives

0.007857 = 0.992036× 0.003960 + 0.003960× 0.992054 = 0.007857

0.007857 = 0.992036× 0.003968 + 0.003968× 0.992054 = 0.007873

0.007857 = 0.992036× 0.003964 + 0.003964× 0.990054 = 0.007857

So the second actuary’s calculations cannot be right. Furthermore, since µ02
x < µ12

x for all x, we should have

4p
02
37 <4 p

12
37, which rules out the first actuary’s calculations. This means that only Actuary III’s calculations

might be correct. [Indeed these are the correct values.]

8.6 Premiums

5
The rate of exit of state 0 is 0.0004+0.000003(t+42) = 0.000526+0.000003t, so tp

(00)
42 = e−

∫ t
0
0.000526+0.000003t dt =

e−0.000526−0.0000015t
2

.
Premiums are payable while healthy. If the rate of premium is P , then the expected present value of the

premium paid is

P

∫ 5

0

e−0.03te−0.000526t−0.0000015t
2

dt

= P

∫ 5

0

e−0.030526t−0.0000015t
2

dt

= P

∫ 5

0

e−0.0000015(t+10175.333333)2+0.0000015×10175.3333332 dt

= Pe0.0000015×10175.333333
2

√
π

0.0000015

(
Φ
(

10180.333333
√

0.000003
)
− Φ

(
10175.333333

√
0.000003

))
= 4.637064P

On the other hand, the expected death benefits for lives that are not critically ill first are:
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100000

∫ 5

0

e−0.03te−0.000526t−0.0000015t
2

(0.0001 + 0.000001(t+ 42)) dt

= 100000

∫ 5

0

e−0.030526t−0.0000015t
2

(0.000142 + 0.000001t) dt

= 100000

∫ 5

0

e−0.030526t−0.0000015t
2

(0.000001(t+
0.030526

0.000003
) + 0.000142− 0.01017533333333) dt

= 0.1e
0.0305262

0.000006

∫ 5

0

(
t+

0.030526

0.000003

)
e−0.0000015(t+

0.030526
0.000003 )

2

dt− 1003.333333333333

∫ 5

0

e−0.030526t−0.0000015t
2

dt

= 0.1e
0.0305262

0.000006

[
−e
−0.0000015(t+ 0.030526

0.000003 )
2

0.000003

]5
0

− 1003.333333333333× 4.637064

= 66.97587

If a life becomes critically ill at age x, the probability that it survives for t years is e−
∫ t
0
0.02 dt = e−0.02t.

The expected value of the benefits to such a life is therefore given by

90000

∫ 47−x

0

e−0.03(x+t−42)e−0.02t dt = 90000e−0.03(x−42)
∫ 47−x

0

e−0.05t dt = 1800000e−0.03(x−42)(1−e−0.05(47−x))

The expected value of death benefits to such an individual is

100000

∫ 47−x

0

0.02e−0.03(x+t−42)e−0.02t dt = 2000e−0.03(x−42)
∫ 47−x

0

e−0.05t dt = 4000e−0.03(x−42)(1−e−0.05(47−x))

So the total expected benefits paid to individuals who become disabled are

1840000

∫ 5

0

e−0.000526s−0.0000015s
2

(0.0003 + 0.000002(s+ 42))e−0.03(5−s)(1− e−0.05(5−s)) ds

= 1.84

∫ 5

0

(384 + 2s)e−0.15+0.029474s−0.0000015s2(1− e−0.05(5−s)) ds

= 1.84

∫ 5

0

(384 + 2s)(e−0.15+0.029474s−0.0000015s2 − e−0.4+0.079474s−0.0000015s2) ds

0.15− 0.029474s+ 0.0000015s2 = 0.0000015(s2 − 19649.333333s+ 100000)

= 0.0000015((s− 9824.666667)2 − 96424075)

0.4− 0.079474s+ 0.0000015s2 = 0.0000015(s2 − 52982.666667s+ 266666.666667)

= 0.0000015((s− 26491.333333)2 − 701524075)
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So the expected benefits are

1.84

∫ 5

0

(384 + 2s)(e144.6361e−
0.000003(s−9824.666667)2

2 − e1052.286e−
0.000003(s−26491.333333)2

2 ) ds

= 1.84e144.6361
∫ 5

0

(20033.3333333 + 2(s− 9824.67))e−
0.000003(s−9824.67)2

2 ds− 1.84e1052.286
∫ 5

0

(53366.67 + 2(s− 26491.33))e−
0.000003(s−26491.3321506.33)2

2 ds

= 1.84e144.6361

20033.33×
√

2π

0.000003

(
Φ(−9819.67×

√
0.000003)− Φ(−9824.67×

√
0.000003)

)
− 2

[
e−

0.000003(s−9824.67)2

2

0.000003

]5
0


− 1.84e1052.286

53366.67×
√

2π

0.000003

(
Φ(−26491.33×

√
0.000003)− Φ(−26496.33×

√
0.000003)

)
− 2

[
e−

0.000003(s−26491.33)2

2

0.000003

]5
0


= 371.8703

The total expected benefit is therefore

371.8703 + 66.97587 = 438.8461

The premium is therefore

438.8461

4.637572
= $94.64

6

0.000001

 −
(

1843x+ 38x2 + x3

3

)
374x+ x2 1469x+ 37x2 + x3

3

67x+ 0.5x2 −(341x+ 1.5x2) 274x+ x2

0 0 0


We calculate the probability that the life is in each state at the end of each year:

t tp
00
37 tp

01
37 tp

02
37

0 1 0 0
1 0.99812 0.000375 0.001505
2 0.99617 0.000750 0.003083
3 0.99414 0.001127 0.004736
4 0.99203 0.001505 0.006464
5 0.98985 0.001884 0.008271
6 0.98758 0.002263 0.010156
7 0.98523 0.002644 0.012123
8 0.98280 0.003025 0.014171
9 0.98029 0.003407 0.016303
10 0.97769 0.003790 0.018519

EPV of death benefits is

5



200000
(
0.00150(1.06)−1 + 0.00157(1.06)−2 + 0.00165(1.06)−3 + 0.00172(1.06)−4 + 0.00180(1.06)−5 + 0.00188(1.06)−6

+0.00197(1.06)−7 + 0.00205(1.06)−8 + 0.00213(1.06)−9 + 0.00222(1.06)−10
)

= 2670.49

EPV of disability benefits is

80000(0.000375(1.06)−1 + 0.000750(1.06)−2 + 0.001127(1.06)−3 + 0.001505(1.06)−4 + 0.001884(1.06)−5 + 0.002263(1.06)−6

+0.002644(1.06)−7 + 0.003025(1.06)−8 + 0.003407(1.06)−9 + 0.003790(1.06)−10) = 1116.21

EPV of all benefits is 2670.49 + 1116.21 = 3786.70
EPV of unit premiums is 1 + 0.99812(1.06)−1 + 0.99617(1.06)−2 + 0.99414(1.06)−3 + 0.99203(1.06)−4 +

0.98985(1.06)−5 + 0.98758(1.06)−6 + 0.98523(1.06)−7 + 0.98280(1.06)−8 + 0.98029(1.06)−9 = 7.736653311
So annual premium is

3786.70

7.736653311
= $489.45

7
If the rate of premium is P , the EPV of total premiums received is

Pa0034:10| = P
(
a0034 −10 p

00
34e
−10δa0044 −10 p

00
34e
−10δa1044

)
= (22.07−0.934e−0.3×19.30−0.022e−0.3×0.11)P = 8.71407P

The total EPV of benefits are

80000a01
34:10| + 280000A

02

34:10|

= 80000
(
a0134 −10 p

00
34a

01
44 −10 p

01
34a

11
44

)
+ 280000

(
A

02

34 −10 p
00
34e
−0.3A

02

44 −10 p
01
34e
−0.3A

12

44

)
= 80000(0.64− 0.934e−0.3 × 0.43− 0.022e−0.3 × 17.32) + 280000(0.14− 0.934e−0.3 × 0.19− 0.022e−0.3 × 0.21)

= 4815.30 + 1431.31

= 6246.61

The premium is therefore 6246.61
8.71407 = $716.84.

8
We calculate

ax:5| =

∫ 5

0

e−0.03t(0.2113249e−0.006732051t + 0.7886751e−0.003267949t) dt

=

∫ 5

0

0.2113249e−0.036732051t dt+

∫ 5

0

0.7886751e−0.033267949t) dt

=
0.2113249

0.036732051
(1− e−0.036732051×5) +

0.7886751

0.033267949
(1− e−0.033267949×5)

= 4.598130
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The EPV of the benefits to lives who die accidentally from State 0 are given by

200000

∫ 5

0

0.002(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 400

∫ 5

0

(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 400× 4.598130

= 1839.25

The EPV of the benefits to lives who die otherwise from State 0 are given by

100000

∫ 5

0

0.001(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 100

∫ 5

0

(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)e−0.03t dt

= 100× 4.598130

= 459.81

The EPV of the benefits to lives who die accidentally from State 1 are given by

200000

∫ 5

0

0.001(0.2886752e−0.003267949t − 0.2886752e−0.006732051t)e−0.03t dt

= 200

∫ 5

0

0.2886752e−0.033267949t − 0.2886752e−0.036732051t) dt

=
57.73504

0.033267949
(1− e−5×0.033267949)− 57.73504

0.036732051
(1− e−5×0.036732051)

= 2.226627

The EPV of the benefits to lives who die otherwise from State 1 are given by

100000

∫ 5

0

0.003(0.2886752e−0.003267949t − 0.2886752e−0.006732051t)e−0.03t dt

= 300

∫ 5

0

0.2886752e−0.033267949t − 0.2886752e−0.036732051t) dt

= 3.339940

The total EPV of benefits is therefore 1839.25 + 459.81 + 2.23 + 3.34 = $2, 304.63.
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The annual rate of premium is 2304.63
4.598130 = $501.21.

9
(a) In this case, additional premiums are due for the first three months of each period of sickness. We have

tp
11
x = e−0.006t

a11x:s| =

∫ s

0

e−0.006te−0.03tdt

=
1− e−0.036s

0.036

The EPV of premiums at rate 1 due during the first 3 months of sickness is given by∫ 4.75

0

e−δttp
00
x µ

01
x+t

1− e−0.036×0.25

0.036
dt+

∫ 5

4.75

e−δttp
00
x+tµ

01
x+t

1− e−0.036(5−t)

0.036

=
1− e−0.009

0.036

∫ 4.75

0

e−0.03t(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)0.001 dt

+

∫ 5

4.75

e−0.03t(0.2113249e−0.006732051t + 0.7886751e−0.003267949t)0.001
1− e−0.036(5−t)

0.036
dt

=

(
1− e−0.009

36

)(
0.2113249(1− e−0.036732051×0.475)

0.036732051
+

0.7886751(1− e−0.033267949×0.475)

0.033267949

)
+

1

36

∫ 5

4.75

(0.2113249e−0.036732051t + 0.7886751e−0.033267949t) dt

− 1

36

∫ 5

4.75

(0.2113249e−0.036732051t + 0.7886751e−0.033267949t)e−0.036(5−t) dt

=0.0005866816 +
1

36

(
0.2113249(e−0.036732051×4.75 − e−0.036732051×5)

0.036732051
+

0.7886751(e−0.033267949×4.75 − e−0.033267949×5)

0.033267949

)
− e−0.18

36

∫ 5

4.75

(0.2113249e−0.000732051t + 0.7886751e0.002732051t) dt

=0.0005866816 + 0.005883893

− e−0.18

36

(
0.2113249(e−0.000732051×4.75 − e−0.000732051×5)

0.000732051
+

0.7886751(e0.002732051×5 − e0.002732051×4.75)

0.002732051

)
=0.0005866816 + 0.005883893− 0.005857458

=0.0006131172

The new annuity value is therefore 4.598130 + 0.0006131172 = 4.598761, so the annual rate of premium is
2304.63
4.598761 = $501.14.

(b) This situation is more complicated. One natural approach would be to add an additional state to
represent the off-period (i.e. a new state representing healthy lives who had just recovered from disability, and
would therefore have no waiting time, or a reduced waiting period if they become disabled). The trouble with
this approach is that transitions from this off-period state are not Markovian — lives transition to healthy
once they have been in this state for 6 months.

As a simplifying approximation, we will assume that all periods of disability last at least 3 months and
so use up all the waiting time. Since the time spent in the disabled state is exponentially distributed with

8



λ = 0.002 + 0.001 + 0.003 = 0.006, the probability that a period of disability lasts for less than 3 months is
1− e−0.0015 = 0.001498876, so this approximation should not have a big effect on our estimates.

Suppose the life is healthy at time t. We want to calculate the distribution of the time since they were last
disabled (if ever). The density of the time they last stopped being disabled is given by

f(s) = sp
01
x µ

10
x+st−sp

00
x+s

tp
00
x

= 0.002e−0.004(t−s)
0.2886752e−0.003267949s − 0.2886752e−0.006732051s

0.2113249e−0.006732051t + 0.7886751e−0.003267949t

The probability pd(t) that the individual was disabled at some point during the preceding 6 months is therefore
(for t > 0.5)

pd(t) =

∫ t

t−0.5
f(s) ds

=
0.002e−0.004t

0.2113249e−0.006732051t + 0.7886751e−0.003267949t

∫ t

t−0.5
e0.004s

(
0.2886752e−0.003267949s − 0.2886752e−0.006732051s

)
ds

=
0.002× 0.2886752e−0.004t

0.2113249e−0.006732051t + 0.7886751e−0.003267949t

∫ t

t−0.5

(
e0.000732051s − e−0.002732051s

)
ds

=
0.002× 0.2886752

0.2113249e−0.002732051t + 0.7886751e0.000732051t

∫ t

t−0.5

(
e0.000732051s − e−0.002732051s

)
ds

=
0.002× 0.2886752

0.2113249e−0.002732051t + 0.7886751e0.000732051t

(
e0.000732051t − e0.000732051(t−0.5)

0.000732051
− e−0.002732051(t−0.5) − e−0.002732051t

0.002732051

)
=

0.002× 0.2886752

0.2113249e−0.002732051t + 0.7886751e0.000732051t

(
e0.000732051t

(
1− e−0.000366026

0.000732051

)
− e−0.002732051t

(
e0.001366026 − 1

0.002732051

))
= 0.0005773504

0.4999092e0.000732051t − 0.5003418e−0.002732051t

0.2113249e−0.002732051t + 0.7886751e0.000732051t

= 0.0005773504
0.4999092e0.000732051t − 0.5003418e−0.002732051t

0.2113249e−0.002732051t + 0.7886751e0.000732051t

= 0.0005773504
0.4999092e−0.003267949t − 0.5003418e−0.006732051t

tp
00
x
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For t < 0.5 we have

pd(t) =

∫ t

0

f(s) ds

=
0.002e−0.004t

tp
00
x

∫ t

0

e0.004s
(
0.2886752e−0.003267949s − 0.2886752e−0.006732051s

)
ds

=
0.002× 0.2886752e−0.004t

tp
00
x

∫ t

0

(
e0.000732051s − e−0.002732051s

)
ds

=
0.0005773504e−0.004t

tp
00
x

∫ t

0

(
e0.000732051s − e−0.002732051s

)
ds

=
0.0005773504e−0.004t

tp
00
x

(
e0.000732051t − 1

0.000732051
− 1− e−0.002732051t

0.002732051

)
=

0.0005773504

tp
00
x

(
e−0.003267949t − e−0.004t

0.000732051
− e−0.004t − e−0.006732051t

0.002732051

)
=

0.7886751e−0.003267949t + 0.2113249e−0.006732051t − e−0.004t

tp
00
x

= 1− e−0.004t

tp
00
x

Now we will use the same method as in (a), except that whenever the life becomes sick, the waiting period
is 0 with probability pd(t) and 0.25 with probability 1− pd(t).

We already calculated in (a), that given W , the expected premiums during this waiting period are given

by a11
x:0.25| = 1−e−0.036×0.25)

0.036 = 1−e−0.009

0.036 = 0.2488784.

As in part (a) we calculate the EPV of premiums during the first 3 months of disability that are a contin-
uation of an earlier period of disability (so this is the difference between the answer and the answer to part
(a)):

10



∫ 0.5

0

pd(t)e
−δt

tp
00
x µ

01
x+t

1− e−0.036×0.25

0.036
dt+

∫ 4.75

0.5

pd(t)e
−δt

tp
00
x µ

01
x+t

1− e−0.036×0.25

0.036
dt+

∫ 5

4.75

pd(t)e
−δt

tp
00
x µ

01
x+t

1− e−0.036(5−t)

0.036

=

(
1− e−0.009

0.036

)(∫ 0.5

0

e−0.03ttp
00
x 0.001 dt−

∫ 0.5

0

e−0.03te−0.004t0.001 dt

)
+ 0.0005773504

(
(1− e−0.009)

0.036

∫ 4.75

0.5

e−0.03t(0.4999092e−0.003267949t − 0.5003418e−0.006732051t)0.001 dt

+

∫ 5

4.75

e−0.03t(0.4999092e−0.003267949t − 0.5003418e−0.006732051t)0.001
1− e−0.036(5−t)

0.036
dt

)
=

(
1− e−0.009

36

)(
0.2113249(1− e−0.036732051×0.5)

0.036732051
+

0.7886751(1− e−0.033267949×0.5)

0.033267949

)
+ 0.0005773504

((
1− e−0.009

36

)(
0.4999092(e−0.033267949×0.5 − e−0.033267949×4.75)

0.033267949
− 0.5003418

(e−0.036732051×0.5 − e−0.036732051×4.75)

0.036732051

)
+

1

36

∫ 5

4.75

(0.4999092e−0.033267949t − 0.5003418e−0.036732051t) dt

− 1

36

∫ 5

4.75

(0.4999092e−0.033267949t − 0.5003418e−0.036732051t)e−0.036(5−t) dt

)

=0.0001233874 + 0.0005773504

(
3.886234× 10−06

+
1

36

(
0.2113249(e−0.036732051×4.75 − e−0.036732051×5)

0.036732051
+

0.7886751(e−0.033267949×4.75 − e−0.033267949×5)

0.033267949

)
− e−0.18

36

(
0.2113249(e−0.000732051×4.75 − e−0.000732051×5)

0.000732051
+

0.7886751(e0.002732051×5 − e0.002732051×4.75)

0.002732051

)
=0.0001233874 + 0.0005773504(3.886234× 10−06 + 0.005883893− 0.005857458)

=0.0001234049

Therefore, under this model, we have ax:5 = 4.598761 − 0.0001234049 = 4.598638. The premium is therefore
2304.63
4.598638 = $501.15.

8.7 Policy Values and Thiele’s Differential Equation

10
Thiele’s differential equation gives

11



d

dt
tv

(1) = δtv
(1) + P (1) −B(1) −

∑
j 6=1

µ
(1j)
x+t(S

(1j) +t v
(j) −t v(1))

= 0.03tv
(1) − 90000− µ(12)

x+t(100000− tv
(1))

= 0.03tv
(1) − 90000− 0.02(100000− tv

(1))

= 0.05tv
(1) − 92000

tv
(1) = 1840000(1− e0.05(t−5))

d

dt
tv

(0) = δtv
(0) + P (0) −B(0) −

∑
j 6=0

µ
(0j)
x+t(S

(0j) +t v
(j) −t v(0))

= 0.03tv
(0) + 71.83− 0− µ(01)

x+t(tv
(1) −t v(0))− µ(02)

x+t(100000− tv
(0))

= 0.03tv
(0) + 71.83− (0.0003 + 0.000002(42 + t))(tv

(1) −t v(0))− (0.0001 + 0.000001(42 + t))(100000− tv
(0))

= 0.03tv
(0) + 71.83− (0.000384 + 0.000002t)(1840000(1− e0.05(t−5))−t v(0))− (0.000142 + 0.000001t)(100000− tv

(0))

= 71.83− 706.56− 14.2− 3.68t(1− e0.05(t−5))− 0.1t+ (0.03 + 0.0000384 + 0.000142)tv
(0) + 0.000003ttv

(0) + 70.656e0.05(t−5)

= −13.026− 3.78t+ 3.68te0.05(t−5) + 0.0300526tv
(0) + 0.000003ttv

(0) + 706.56e0.05(t−5)

8.9 Multiple Decrement Tables

11
We have tp

(00)
x = e−0.0023t−0.000005((x+t)

2−x2), so we have

a
(00)

36:10| =

∫ 10

0

e−0.04te−0.0023t−0.000005((36+t)
2−362) dt

=

∫ 10

0

e−0.04266t−0.000005t
2

dt

= e
4266

200000

∫ 10

0

e−
(t+4266)2

200000 dt

= 100
√

20πe
42662

20000

(
Φ

(
42.76√

10

)
− Φ

(
42.66√

10

))
= 8.139325

12



A
(01)

36:10| =

∫ 10

0

(0.00102 + 0.00002t)e−0.04te−0.0023t−0.000005((36+t)
2−362) dt

= e
42662

200000

∫ 10

0

0.00002(t+ 51)e−
(t+4266)2

200000 dt

= 0.00002e
42662

200000

(∫ 10

0

(t+ 4266)e−
(t+4266)2

200000 dt− 4215

∫ 10

0

e−
(t+4266)2

200000 dt

)
= 0.00002e

42662

200000

([
−100000e−

(t+4266)2

200000

]10
0

− 421500
√

20π

(
Φ

(
42.76√

10

)
− Φ

(
42.66√

10

)))
= 0.009058283

So the annual rate of premium is

300000× 0.01093749

8.007432
= $333.87

(b) For policies which do not lapse, we only need to consider the mortality rate. This gives

a
(00)

36+t:10−t| =

∫ 10−t

0

e−0.04se−0.0003s−0.000005((36+t+s)
2−(36+t)2) ds

=

∫ 10−t

0

e−(0.04102+0.00001t)s−0.000005s2 ds

= e
41022

200000

∫ 10−t

0

e−
(s+t+4102)2

200000 ds

= 100
√

20πe
(t+4102)2

200000

(
Φ

(
41.12√

10

)
− Φ

(
t+ 4102

100
√

10

))

and

A
(00)

36+t:10−t| = 1− 0.04a
(00)

36+t:10−t|

So the policy value is

tV = 300000(1− 0.04a
(00)

36+t:10−t| −10−t p36+te
−0.04(10−t))− Pa(00)

36+t:10−t|

= 300000− (12000 + P )a
(00)

36+t:10−t| − 30000010−tp36+te
−0.04(10−t)

= 300000− (12000 + P )100
√

20πe
(t+4102)2

200000

(
Φ

(
41.12√

10

)
− Φ

(
t+ 4102

100
√

10

))
− 30000010−tp36+te

−0.04(10−t)

= a(t) + b(t)P

13



for some functions a(t) and b(t).
From (a), the expected death benefit of the policy is 300000× 0.01093749 = $3281.25.
The expected surrender benefit for the policy is

1

2

∫ 10

0

e−0.04ttp36µ
(01)
36+ttV dt =

1

2

∫ 10

0

e−0.04te−(0.0023t+0.000005(t2+72t))(0.002− 0.00001(36 + t))tV dt

=
1

2

∫ 10

0

e−0.000005(t
2+8532t)(0.00001(164− t))tV dt

=
1

2

∫ 10

0

e−0.000005(t
2+8532t)(0.00001(164− t))(a(t) + b(t)P ) dt

=
1

2

(∫ 10

0

e−0.000005(t
2+8532t)(0.00001(164− t))a(t) dt

+

∫ 10

0

e−0.000005(t
2+8532t)(0.00001(164− t))b(t)P dt

)
=

1

2
(46.51242− 0.08175562P )

Using numerical integration. We note that this requires the policy value to always be positive.
We therefore have

8.007432P = 3281.247 + 23.25621− 0.04087781P

7.966554P = 3304.50321

P = $414.80

12
We have

tp
(00)
x = e−

∫ t
0
0.0023+0.00001(x+s) ds = e−((0.0023+0.00001x)t+0.000005t2)

In particular,

tp
(00)
29 = e−(0.00259t+0.000005t2)

We therefore calculate

a
(00)

29:10| =

∫ 10

0

e−0.05te−(0.00259t+0.000005t2) dt

=

∫ 10

0

e−(0.05259t+0.000005t2) dt

= e
52592

200000

∫ 10

0

e−
(t+5259)2

200000 dt

= e
52592

200000 100
√

20π

(
Φ

(
52.69√

10

)
− Φ

(
52.59√

10

))
= 7.775573

14



On the other hand we have

A
(01)

29:10| =

∫ 10

0

0.0003e−0.05te−(0.00259t+0.000005t2) dt

= 0.0003

∫ 10

0

e−(0.05259t+0.000005t2) dt

= 0.0003e
52592

200000

∫ 10

0

e−
(t+5259)2

200000 dt

= 0.0003e
52592

200000 100
√

20π

(
Φ

(
52.69√

10

)
− Φ

(
52.59√

10

))
= 0.002332672

and

A
(02)

29:10| =

∫ 10

0

0.00002(29 + t)e−0.05te−(0.00259t+0.000005t2) dt

=

∫ 10

0

0.00002(29 + t)e−(0.05259t+0.000005t2) dt

= 0.00002e
52592

200000

∫ 10

0

(t+ 5259− 5230)e−
(t+5259)2

200000 dt

= 0.00002e
52592

200000

(
100000

(
e−

(5259)2

200000 − e−
(5269)2

200000

)
− 523000

√
20π

(
Φ

(
52.69√

10

)
− Φ

(
52.59√

10

)))
= 0.005219487

The EPV of benefits is therefore

100000× 0.005219487 + 200000× 0.002332672 = 988.48

and the premium is

988.48

7.775573
= $127.13

13

56.94 + 56.61

9878.44
= 0.01149473

14
We calculate
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A
(02) 1

40:5| =
0.30(1.03)−1 + 0.29(1.03)−2 + 0.28(1.03)−3 + 0.27(1.03)−4 + 0.27(1.03)−5

10000
= 0.000129365

A
(03) 1

40:5| =
1.62(1.03)−1 + 1.70(1.03)−2 + 1.78(1.03)−3 + 1.89(1.03)−4 + 1.98(1.03)−5

10000
= 0.0008191387

ä40:5| = 1 + 0.993908(1.03)−1 + 0.987844(1.03)−2 + 0.981806(1.03)−3 + 0.975795(1.03)−4 = 4.66157

So the net premium is 200000×0.000129365+100000×0.0008191387
4.66157 = $23.12

15
(a) Using UDD in the multiple decrement table, the probability that the policy is still in force at age 46

years 3 months is
1
4 9579.02+

3
4 0.963844

1
3 10000+

2
3 9939.08

= 0.9662829.

The probability that the life then dies in an accident before age 47 is 3
4×

0.25
1
4×9579.02+

3
4×9638.44

= 0.00001948338.

The probability that the life dies in an accident between ages 46 and 3 months and 47 is therefore 0.9662829×
0.00001948338 = 0.00001882646.

The probability that the life survives to age 47 is 9579.02
1
3 10000+

2
3 9939.08

= 0.9618082.

The probability that a life aged 47 dies in an accident before age 47 and 5 months is 5
12 ×

0.24
9579.02 . The

probability that the life dies in an accident between ages 47 and 47 and 5 months is therefore
5
12 ×

0.24
9579.02 ×

9579.02
1
3 10000+

2
3 9939.08

= 0.00001004078.

The total probability is therefore
0.00001882646 + 0.00001004078 = 0.00002886724.
(b)
Using constant transition intensities, the rate of decrement for a life aged 42–43 is − log

(
9939.08
10000

)
=

0.006110632. The probability that a policy starting at age 42 is still in force at age 42 and 4 months is
e−

0.006110632
3 = 0.9979652. The intensity of decrement aged 46–47 is − log

(
9579.02
9638.44

)
= 0.00618398. This gives

that l
(0)
46.25 = 9638.44e−0.25×0.00618398 = 9623.55. The probability that the policy is still in force at age 46 and

3 months is therefore 9623.55
9979.65 = 0.9643174. The intensity of accidental deaths between ages 46–47 is

0.25

9638.44
∫ 1

0
e−0.00618398x dx

and the probability of accidental death between ages 46 and 3 months and 47 is therefore

0.25

9638.44
∫ 1

0
e−0.00618398x dx

∫ 0.75

0

e−0.00618398x dx =
0.25

9638.44

1− e−0.00618398×0.75

1− e−0.00618398
= 0.00001946839

The probability of surviving to age 47 is 9579.02
9979.65 = 0.9598551.

The intensity of decrements between ages 47–48 is
− log

(
9519.81
9579.02

)
= 0.0062004.

The intensity of accidental deaths between ages 47–48 is

0.24

9579.02
∫ 1

0
e−0.0062004x dx

16



and the probability of accidental death between ages 47 and 47 and 5 months is therefore

0.24

9579.02
∫ 1

0
e−0.00620040.00618398x dx

∫ 5
12

0

e−0.0062004x dx =
0.24

9579.02

1− e−0.0062004× 5
12

1− e−0.0062004
= 0.00001045836

The total probability of dying in an accident between ages 46 years 3 months and 47 years 5 months is
therefore

0.00001946839× 0.9643174 + 0.00001045836× 0.9598551 = 0.00002881222

8.10 Constructing a Multiple Decrement Table

16
(a) Under UDD, suppose there are x policies at the start of the year, and during the year, y surrender and z

die. Assuming UDD, the number of policies still in force at time t is x−(y+z)t, so the rate of dying is z
x−(y+z)t .

Assume that the deaths in the new table are uniformly distributed over the year. (This is inconsistent with
our uniform distribution assumption for policies with surrender, but what the hell.) If the updated mortality
table has w deaths from v lives, then the rate of death at time t is v

w−vt . With this update, let xt be the
number of policies still in force at time t. We have

dxt
dt

= −
(

y

x− (y + z)t
+

v

w − vt

)
xt

This gives

x1 = xe−
∫ 1
0

y
x−(y+z)t

+ v
w−vt dt = e[y log(x−(y+z)t)+v log(w−vt)]

1
0 = e

y
y+z log( x−(y+z)

x )+log(w−vw )

=

(
x− (y + z)

x

) y
y+z

(
w − v
w

)

In the new table, we get

(
x− (y + z)

x

) y
y+z

=

((
x− (y + z)

x

) y
y+z

(
w − v
w

)) y′
y′+z′

y′

y′ + z′
=

y

y + z

 log
(
x−(y+z)

x

)
log

((
x−(y+z)

x

) y
y+z (w−v

w

))


=

y
y+z log

(
x−(y+z)

x

)
y
y+z log

(
x−(y+z)

x

)
+ log

(
w−v
w

)

17



Using this, we can calculate the probabilities on the following slide.
(b) Suppose there are x policies at the start of the year, and during the year, y surrender and z die. Under

constant transition probabilities, we have the number of policies still in force at time t is xelog(
x−y−z
x )t =

x
(
x−y−z
x

)t
. If the constant rate of surrender is µ(01), then

y =

∫ 1

0

µ(01)xelog(
x−y−z
x )t dt = µ(01)x

1− x−y−z
x

log(x)− log(x− y − z)
= µ(01) y + z

log(x)− log(x− y − z)

This gives µ(01) = y(log(x)−log(x−y−z))
(y+z) , so without deaths, the probability of surrender is e−(log(x)−log(x−y−z))

y
(y+z) =(

x−y−z
x

) y
y+z . The table is therefore the same as in part (a).

(c) If each independent decrement satisfies UDD, then suppose the probabilities for surrender and death as
only decrements are p and q respectively, then the rate of surrender is p

1−pt and the rate of death is q
1−qt .

Now in a model with two decrements, the total rate of decrement is p
1−pt + q

1−qt , so the total probability
of no decrement in the year is

e−
∫ 1
0

p
1−pt+

q
1−qt dt = e[log(1−pt)+log(1−qt)]10 = (1− p)(1− q)

Similarly, the probability of no decrement before time t is (1− pt)(1− qt). The probability of surrender is∫ 1

0

(1− pt)(1− qt) p

1− pt
dt =

∫ 1

0

p(1− qt) dt = p
(

1− q

2

)
Similarly, the probability of death is q

(
1− p

2

)
.

If we are given the probabilities of surrender and death in the multiple decrement model are a and b
respectively, then we have to solve

p
(

1− q

2

)
= a

q
(

1− p

2

)
= b

p− q = a− b

p− p2

2
= a− p

2
(a− b)

p2 + (b− a− 2)p+ 2a = 0

p =
a+ 2− b±

√
(a+ 2− b)2 − 8a

2

=
a+ 2− b±

√
a2 + b2 + 4− 2ab− 4a− 4b)

2

q =
b+ 2− a±

√
a2 + b2 + 4− 2ab− 4a− 4b)

2

18



x lx dx
40 10000.00 59.01
41 9940.99 59.02
42 9881.98 59.03
43 9822.95 59.04
44 9763.91 59.06
45 9704.85 59.07
46 9645.78 59.08
47 9586.69 59.11

9.2 Joint Life and Last Survivor Benefits

18
Advantages Disadvantages
Annuity value does not depend on time of death Value of benefit varies with time of death

9.4 Independent Future Lifetimes

19

ä63,62:10| = 1 + 0.999830
9996.47

9998.30
(1.07)−1 + 0.999647

999449

9998.30
(1.07)−2 + 0.999449

9992.35

9998.30
(1.07)−3 + 0.999235

9990.03

9998.30
(1.07)−4

+ 0.999003
9987.53

9998.30
(1.07)−5 + 0.998753

9984.83

9998.30
(1.07)−6 + 0.998483

9981.91

9998.30
(1.07)−7 + 0.998191

9978.76

9998.30
(1.07)−8

+ 0.997876
9975.34

9998.30
(1.07)−9

= 7.502352

19



ä63,62:10| = 0.0000170× 1.83

9998.30
(1.07)−1 +

(
0.0000353× 1.83 + 1.98

9998.30
− 0.0000170× 1.83

9998.30

)
(1.07)−2

+

(
0.0000551× 1.83 + 1.98 + 2.14

9998.30
− 0.0000353× 1.83 + 1.98

9998.30

)
(1.07)−3

+

(
0.0000765× 1.83 + 1.98 + 2.14 + 2.31

9998.30
− 0.0000551× 1.83 + 1.98 + 2.14

9998.30

)
(1.07)−4

+

(
0.0000996× 1.83 + 1.98 + 2.14 + 2.31 + 2.50

9998.30
− 0.0000765× 1.83 + 1.98 + 2.14 + 2.31

9998.30

)
(1.07)−5

+

(
0.0001246× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70

9998.30
− 0.0000996× 1.83 + 1.98 + 2.14 + 2.31 + 2.50

9998.30

)
(1.07)−6

+

(
0.0001516× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92

9998.30

−0.0001246× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70

9998.30

)
(1.07)−7

+

(
0.0001808× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92 + 3.16

9998.30

−0.0001516× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92

9998.30

)
(1.07)−8

+

(
0.0002124× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92 + 3.16 + 3.41

9998.30

−0.0001808× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92 + 3.16

9998.30

)
(1.07)−9

+

(
0.0002465× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92 + 3.16 + 3.41 + 3.69

9998.30

−0.0002124× 1.83 + 1.98 + 2.14 + 2.31 + 2.50 + 2.70 + 2.92 + 3.16 + 3.41

9998.30

)
(1.07)−10

= 0.0000003531257

So the premium is 2000000×0.0000003531257
7.502352 = $0.09.

20
If the Husband is dead and the wife is alive at the end of the policy with probability 0.997567×0.001251, then

the wife receives a reversionary annuity with value 30000× 13.89755 = 416926.5. The expected present value
of payments after the end of the policy is therefore 30000×13.89755×0.997567×0.001251(1.05)−7 = 369.7718.
Payments during the term of the policy are received if and only if the husband is dead and the wife is alive.
The expected present value of payments received during the term of the policy is therefore

30000
(
0.000135× 0.999736(1.05)−1 + 0.000283× 0.999448(1.05)−2 + 0.000444× 0.999134(1.05)−3

+0.000620× 0.998791(1.05)−4 + 0.000812× 0.998419(1.05)−5 + 0.001022× 0.998012(1.05)−6
)

= 80.22267

So the total expected benefit is 369.7718 + 80.22267 = 449.9945.
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For the premiums, we have

ä53,64:7| = 1+0.999865×0.999736(1.05)−1+0.999717×0.999448(1.05)−2+0.999555×0.999134(1.05)−3+0.999380×0.998791(1.05)−4+0.999187×0.998419(1.05)−5+0.998978×0.998012(1.05)−6 = 6.067799

So the net annual premium is 80.22267
6.067799 = $13.22.

21
The probabilities of each being dead after n years are:

Years P(Husband Dead) P(Wife Dead) P(Survivor) EPV benefit
0 0.000000 0.000000 1.0000000 1.0000000
1 0.057684 0.000103 0.9999941 0.9433906
2 0.120792 0.000213 0.9999743 0.8899735
3 0.189153 0.000331 0.9999374 0.8395667
4 0.262348 0.000457 0.9998801 0.7919987
5 0.339656 0.000592 0.9997989 0.7471079
6 0.420004 0.000736 0.9996909 0.7047426
7 0.501937 0.000891 0.9995528 0.6647597
8 0.583624 0.001057 0.9993831 0.6270253
9 0.662908 0.001236 0.9991806 0.5914135
10 0.737429 0.001428 0.9989470 0.5578068
11 0.804821 0.001635 0.9986841 0.5260943
12 0.862981 0.001858 0.9983966 0.4961725
13 0.910384 0.002098 0.9980900 0.4679435
14 0.946379 0.002357 0.9977694 0.4413144
15 0.971384 0.002637 0.9974385 0.4161962
16 0.986877 0.002939 0.9970996 0.3925045
17 0.995126 0.003265 0.9967509 0.3701578
18 0.998683 0.003617 0.9963878 0.3490783
19 0.999799 0.003998 0.9960028 0.3291919
total 12.14644

The EPV of benefits after 20 years is 0.9955900(1.06)−20× 16.1807 = 5.022969, so total EPV is 12.14644 +
5.022969 = 17.16941.

Net premium is 45000× 17.16941 = $772, 623.45.
22

Year P(Husband Dies) P(Wife Dies) P(Both die) P(One dies)
1 0.000180 0.001651 0.00000029718 0.001830994
2 0.000193 0.001785 0.00000035343 0.001977993
3 0.000208 0.001929 0.000000401232 0.002136992
4 0.000223 0.002085 0.000000464955 0.002307991
5 0.000240 0.002254 0.00000054096 0.002493989
6 0.000258 0.002435 0.00000062823 0.002692987
7 0.000278 0.002631 0.000000731418 0.002908985

Annual EPV from one dying: 0.0138451
Annual EPV from both dying 0.000002863602
x = (1 + i)

1
12
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144
(x+ x2 + · · ·+ x11)− 23

144
x12

=
1

144
+

2x

144

(
x11 − 1

x− 1

)
− 23

144
x12

y =
1

144(x− 1)

(
23x12 − 1− 2

x11 − 1

x− 1

)
=

1

12i(12)

(
23i+ 22− 2

x11 − 1

x− 1

)
i(12) = 0.039288
y = 1.024815

A
(12 1)

45,76:7| = 0.0138451
i

i(12)
+ 0.000002863602× 1.024815 = 0.01410006

A
(12)

45,76:7| = 0.01410006 + 0.997090283582(1.04)−7 = 0.7718067

d(12) = 12
(

1− (1.04)−
1
12

)
= 0.03915669

This gives ä
(12)

45,76:7| = 1−0.7718067
0.03915669 = 5.827696

So the monthly premiums are 850000×0.01410006
12×5.827696 = $171.38

9.6 A Model with Dependent Future Lifetimes

23
(a)

Year P(Husband Dies) P(Wife Survives) P(Wife Survives to 49) P(Husband Dies and Wife Survives to 49)
1 0.004599 0.999900 9961.92

9997.47 0.004582188
2 0.004984 0.999794 9961.92

9994.72 0.004966621
3 0.005398 0.999681 9961.92

9991.74 0.005380173
4 0.005844 0.999560 9961.92

9988.49 0.00582589
5 0.006324 0.999432 9961.92

9984.95 0.00630583
6 0.006840 0.999294 9961.92

9981.10 0.006822036
7 0.007394 0.999148 9961.92

9976.91 0.007376601
8 0.007989 0.998991 9961.92

9972.34 0.0079726
9 0.008625 0.998823 9961.92

9967.36 0.008610147
> 10 0.942003 0.998644 1 0.9407256

0.9985677
(b)
Suppose the probability of the wife surviving while the husband is alive is p1 and while the husband is

dead is p2. If the husband dies at time t during the year, the wife’s probability of surviving the year is

(1− tq1)
(

p2
1−tq2

)
22



The probability of the wife’s surviving the year if the husband dies at a uniformly distributed time during
the year is therefore ∫ 1

0

(1− tq1)

(
p2

1− tq2

)
dt = p2

(
q1
q2

+ (q2 − q1) log(1− q2)

)
Year P(Husband Dies) P(Wife Survives P(Wife survives year P(Wife Survives to 49) P(Husband Dies and

to start of year) given Husband dies) Wife Survives to 49)
1 0.004599 1 0.9998235 9961.92

9997.47 0.004581838
2 0.004984 0.999900 0.9995565 9961.92

9994.72 0.004964944
3 0.005398 0.999794 0.9992660 9961.92

9991.74 0.005376837
4 0.005844 0.999681 0.9989505 9961.92

9988.49 0.005820486
5 0.006324 0.999560 0.9986070 9961.92

9984.95 0.006297865
6 0.006840 0.999432 0.9982330 9961.92

9981.10 0.006810936
7 0.007394 0.999294 0.9978261 9961.92

9976.91 0.007361662
8 0.007989 0.999148 0.9973831 9961.92

9972.34 0.007953002
9 0.008625 0.998991 0.9969001 9961.92

9967.36 0.008584917
10 0.009305 0.998823 0.9963737 1 0.009260354
> 10 0.932698 0.998644 1 1 0.9407256

0.9984461
24
By summing over times the husband dies, we calculate the following lifetable for the wife.
Suppose the mortality for the wife while the husband is alive is q1, the mortality while the husband is dead

is q2, and the mortality of the husband is q3. Conditional on the husband dying at time t in the year, the
probability that the wife dies during the year is

tq1 + (1− tq1)

(
1− 1− q2

1− tq2

)
= tq1 + (1− tq1)

(1− t)q2
1− tq2

The total probability that the wife dies during the year if the husband is alive at the start of the year is
therefore
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(1− q3)q1 +

∫ 1

0

q3

(
tq1 + (1− tq1)

(1− t)q2
1− tq2

)
dt

= (1− q3)q1 +
q1q3

2
+ q2q3

∫ 1

0

(1− t)1− tq1
1− tq2

dt

= (1− q3)q1 +
q1q3

2
+ q2q3

∫ 1

0

1− (1 + q1)t+ q1t
2

1− tq2
dt

= (1− q3)q1 +
q1q3

2
+ q2q3

∫ 1

0

1 + q1 + q1
q2

q2
− q1
q2
t+

1−
1+q1+

q1
q2

q2

1− tq2
dt

= (1− q3)q1 +
q1q3

2
+ q2q3

(
1 + q1 + q1

q2

q2
− q1

2q2
+

(
1−

1 + q1 + q1
q2

q2

)[
− log(1− tq2)

q2

]1
0

)

= (1− q3)q1 + q3

(
1 + q1 +

q1
q2

)
+ q3

(
1−

1 + q1 + q1
q2

q2

)
(log(1)− log(1− q2))

= (1− q3)q1 + q3

(
1 + q1 +

q1
q2

)
− q3

(
q2

2 − q2 − q1q2 − q1
q22

)
log(1− q2)

= q1 + q3

(
q1 + q2
q2

)
+ q3

(
q2 + q1q2 + q1 − q22

q22

)
log(1− q2)

If the probability that the husband and wife are both alive at the start of the year is p1 and the probability
that the wife is alive, but the husband is dead is p2, then the probability that both are alive at the end of the
year is p1(1− q1)(1− q3). The probability that the wife is alive and the husband is dead at the end of the year
is therefore:

p2(1− q2) + p1

(
1−

(
q1 + q3

(
q1 + q2
q2

)
+ q3

(
q2 + q1q2 + q1 − q22

q22

)
log(1− q2)

)
− (1− q1)(1− q3)

)
= p2(1− q2) + p1

(
q3(1− q1)−

(
q3

(
q1 + q2
q2

)
+ q3

(
q2 + q1q2 + q1 − q22

q22

)
log(1− q2)

))
= p2(1− q2)− p1q3

(((
q1 +

q1
q2

)
+

(
q2 + q1q2 + q1 − q22

q22

)
log(1− q2)

))
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Year Both Alive Husband Dead, Wife Alive Wife Alive
0 10000.00 0.00 10000.00
1 9953.01 45.99 9999.00
2 9902.13 95.80 9997.93
3 9847.05 149.74 9996.79
4 9787.45 208.11 9995.56
5 9722.99 271.24 9994.23
6 9653.31 339.49 9992.80
7 9578.01 413.22 9991.23
8 9496.70 492.84 9989.54
9 9408.95 578.74 9987.70

10 9314.33 671.35 9985.69
This gives

a39:10| = 8.431041

A39:10| = 0.001132052

So the annual premium is
200000× 0.001132052

8.431041
= $26.85

9.7 The Common Shock Model

25
We have

tp
(00)
25:56 = e−

∫ t
0
0.000042+0.000000001(56+s)+0.000000002(25+s)+0.000001(25+s)2+0.000002(56+s)2ds

=e−
∫ t
0
0.003403106+0.000174003s+0.000003s2ds

=e−(0.003403106t+0.0000870015t2+0.000001t3)

So the probability is given by

∫ 10

0

e−(0.003403106t+0.0000870015t2+0.000001t3)(0.000002(25 + t)2 + 0.000000002(56 + t))e−0.000002
(663−(56+t)3)

3 dt

=

∫ 10

0

e−(0.07458667−0.002868894t−0.0000249985t
2−0.000001t3)(0.001250112 + 0.000100002t+ 0.000002t2)dt

= 0.01715084

26
If the husband dies first after time t, then the present value (at time of husband’s death) of the life annuity

is

25000

∫ ∞
0

e−0.005se−0.04s ds =
25000

0.045
= 555555.56
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The total transition intensity out of state 0 is

(0.000001(56 + t)2 + 0.000000001(25 + t)) + (0.000002(25 + t)2 + 0.000000002(56 + t)) + 0.000042

= 0.000003t2 + 0.000212003t+ 0.004428137

The expected value of the life annuity is therefore

555555.56

∫ ∞
0

(0.000002(25 + t)2 + 0.000000002(56 + t))e−(0.000003t
2+0.000212003t+0.004428137)e−0.04t dt

= 555555.56

∫ ∞
0

(0.000002(25 + t)2 + 0.000000002(56 + t))e−(0.000003t
2+0.040212003t+0.004428137) dt

= $84, 251.58

(Numerically integrated)
The expected present value of the premiums is

P

∫ ∞
0

e−(0.000003t
2+0.000212003t+0.004428137)e−0.04t dt

= P

∫ ∞
0

e−(0.000003t
2+0.040212003t+0.004428137) dt

= P

∫ ∞
0

e−(0.000003(t+6702.0005)2−134.746) dt

= Pe134.746
∫ ∞
0

e−0.000003(t+6702.0005)2 dt

= Pe134.746
√

π

0.000003

(
1− Φ(6702.0005

√
0.000006)

)
= 24.66746P

We therefore get that

24.66746P = 84251.58

P = $3, 415.49

27
We have

tp
(00)
xy = e−

∫ t
0
0.001002(y+s)+0.002001(x+s)+0.012 ds = e−((0.001002y+0.002001x+0.012)s+0.0015015s2)

Numerically integrating gives the following lifetable
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Year Both H alive H dead Both
alive W dead W alive dead

0 10000.00 0.00 0.00 0.00
1 8247.83 239.88 1332.93 179.36
2 6782.28 394.62 2365.22 457.88
3 5560.41 485.42 3144.19 809.98
4 4545.01 529.17 3711.21 1214.61
5 3703.89 539.19 4102.32 1654.61
6 3009.38 525.84 4348.71 2116.08
7 2437.76 497.08 4477.26 2587.90
8 1968.80 458.92 4511.01 3061.27
9 1585.29 415.81 4469.58 3529.31

10 1272.65 370.99 4369.61 3986.74
11 1018.61 326.71 4225.09 4429.59
12 812.84 284.47 4047.71 4854.98
13 646.68 245.24 3847.19 5260.88
14 512.95 209.54 3631.53 5645.98
15 405.66 177.59 3407.22 6009.54
16 319.84 149.39 3179.52 6351.25
17 251.43 124.80 2952.61 6671.16
18 197.05 103.58 2729.76 6969.60
19 153.97 85.45 2513.48 7247.10
20 119.95 70.09 2305.62 7504.34
21 93.17 57.17 2107.54 7742.12
22 72.15 46.39 1920.14 7961.32
23 55.70 37.45 1743.97 8162.88
24 42.87 30.09 1579.29 8347.75
25 32.90 24.06 1426.12 8516.91
26 25.18 19.15 1284.33 8671.34
27 19.20 15.17 1153.63 8812.00
28 14.61 11.97 1033.61 8939.81
29 11.08 9.40 923.82 9055.71
30 8.37 7.35 823.71 9160.56
31 6.31 5.73 732.75 9255.21
32 4.74 4.44 650.34 9340.48
33 3.55 3.43 575.90 9417.11
34 2.65 2.64 508.86 9485.85
35 1.98 2.03 448.64 9547.36
36 1.47 1.55 394.69 9602.29
37 1.09 1.18 346.50 9651.24
38 0.80 0.89 303.54 9694.76
39 0.59 0.67 265.36 9733.38
40 0.43 0.51 231.49 9767.57
41 0.32 0.38 201.53 9797.77
42 0.23 0.28 175.08 9824.40
43 0.17 0.21 151.80 9847.82
44 0.12 0.16 131.34 9868.38

Year Both H alive H dead Both
alive W dead W alive dead

45 0.09 0.12 113.41 9886.39
46 0.06 0.09 97.73 9902.13
47 0.05 0.06 84.04 9915.85
48 0.03 0.05 72.13 9927.79
49 0.02 0.03 61.78 9938.17
50 0.02 0.02 52.81 9947.15
51 0.01 0.02 45.05 9954.92
52 0.01 0.01 38.35 9961.63
53 0.01 0.01 32.58 9967.40
54 0.00 0.01 27.63 9972.36
55 0.00 0.00 23.38 9976.61
56 0.00 0.00 19.74 9980.25
57 0.00 0.00 16.64 9983.35
58 0.00 0.00 14.00 9986.00
59 0.00 0.00 11.75 9988.25
60 0.00 0.00 9.84 9990.15
61 0.00 0.00 8.23 9991.77
62 0.00 0.00 6.87 9993.13
63 0.00 0.00 5.72 9994.28
64 0.00 0.00 4.75 9995.25
65 0.00 0.00 3.94 9996.06
66 0.00 0.00 3.26 9996.74
67 0.00 0.00 2.70 9997.30
68 0.00 0.00 2.22 9997.78
69 0.00 0.00 1.83 9998.17
70 0.00 0.00 1.50 9998.50
71 0.00 0.00 1.23 9998.77
72 0.00 0.00 1.01 9998.99
73 0.00 0.00 0.82 9999.18
74 0.00 0.00 0.67 9999.33
75 0.00 0.00 0.54 9999.46
76 0.00 0.00 0.44 9999.56
77 0.00 0.00 0.36 9999.64
78 0.00 0.00 0.29 9999.71
79 0.00 0.00 0.23 9999.77
80 0.00 0.00 0.19 9999.81
81 0.00 0.00 0.15 9999.85
82 0.00 0.00 0.12 9999.88
83 0.00 0.00 0.10 9999.90
84 0.00 0.00 0.08 9999.92
85 0.00 0.00 0.06 9999.94
86 0.00 0.00 0.05 9999.95
87 0.00 0.00 0.04 9999.96
88 0.00 0.00 0.03 9999.97
89 0.00 0.00 0.02 9999.98
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(a) Summing up we get that A75,29 = 0.4811416. This gives a75,29 = 1−0.4811416
0.06 = 8.64764. so the premium

is 300000× 0.48114168.64764 = $16, 691.55.
(b) After 10 years, if the husband is dead, but the wife is alive, then the mortality is µ23

y = 0.002y. The
probability that she survives for s years is therefore

e−
∫ s
0
0.002(39+s) ds = e−0.078s−0.001s

2

This gives A39 =
∑∞
i=1(1.06)−i(e−0.078(i−1)−0.001(i−1)

2 − e−0.078i−0.001i2) = 0.590609, so ä39 = 1−0.590609
0.06 =

6.823183. This means that the policy value is

300000× 0.590609− 16691.55× 6.823183 = $63, 293.20

SN 4.2 Mortality Improvement Scales

28
We first interpolate the age effect. That is, we set φ(45, 2000 + t) = f45(t) = at3 + bt2 + ct+ d. We have

f(0) = 0.01863027

f ′(0) = 0.001077732

f(25) = 0.01

f ′(25) = 0

Substituting the above formula gives the equations

d = 0.01863027 (1)

c = 0.001077732 (2)

15625a+ 625b+ 25c+ d = 0.01 (3)

1875a+ 50b+ c = 0 (4)

subtracting twice (3) from 25 times (4) gives

15625a = 25c+ d

= 0.04557357

a = 0.000002916708

b = −0.0001309312

This gives f(13) = 0.000002916708(13)3−0.0001309312(13)2 +0.001077732(13)+0.01863027 = 0.01692142
For the cohort effect, we set φ∗(32 + t, 2000 + t) = g(t) = a∗t3 + b∗t2 + c∗t + d∗. Setting up the same

equations gives

d∗ = 0.03146243 (5)

c∗ = 0.001847864 (6)

15625a∗ + 625b∗ + 25c∗ + d∗ = 0.01 (7)

1875a∗ + 50b∗ + c∗ = 0 (8)
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subtracting twice (7) from 25 times (8) gives

15625a = 25c+ d

= 0.07765903

a = 0.000004970178

b = −0.000223339

Substituting these gives φ∗(45, 2013) = g(13) = 0.000004970178(13)3−0.000223339(13)2+0.001847864(13)+
0.03146243 = 0.02865985

The overall scale function is the average of these two values φ(45, 2013) = 0.01692142+0.02865985
2 = 0.02279064.

The Lee Carter Model

29
(a) We have log(m(40, 2034)) = α40+β40K2034. We also have that K2034 = K2017+17c+σk

∑16
i=0 Z2017+i. A

sum of normal distributions is normal, soK2034 follows a normal distribution with meanK2017+17c and variance
17σk

2. Substituting this into the above formula gives us log(m(40, 2034)) ∼ N(−5.7672, 0.029988). The mean

of a log-normal distribution with parameters µ and σ2 is eµ+
σ2

2 = e−5.7672+
0.029988

2 = 0.003175767, while the
expected square of the log-normal distribution is e2µ+2σ2

= e−2×5.7672+2×0.029988 = 0.00001039252. The vari-
ance of m(40, 2034) is therefore 0.00001039252− 0.0031757672 = 3.07024× 10−07, so the standard deviation is√

3.07024× 10−07 = 0.0005540974. The 5th percentile of log(m(40, 2034)) is −5.7672+Φ−1(0.05)
√

0.029988 =
−6.05204. Therefore the 5th percentile of m(40, 2034) is e−6.05204 = 0.002353057.

(b) The life will be 40 in 7 years, so we need to calculate m(40, 2024). Using the same methods as in part
(a), we get that log(m(40, 2024)) ∼ N(−5.2072, 0.012348).

Under the UDD assumption, suppose we are given qx, we have tpx = 1− tqx, so
∫ 1

0 tpx dt =
∫ 1

0
(1− tqx) dt =

1− qx
2 . This gives

mx =
qx

1− qx
2

=
2qx

2− qx
1

mx
=

1

qx
− 1

2
1

qx
=

1

mx
+

1

2

=
2 +mx

2mx

qx =
2mx

2 +mx

We have

log

( qx
2

1− qx
2

)
= log

(mx

2

)
∼ N(−5.2072− log(2), 0.012348)

so qx
2 has a logit-normal distribution. There is no analytic solution for the mean, but numerically, we can get

E(qx) = 0.00550. Using this, the premium is 300000(1.05)−1 × 0.0054955 = $1, 570.16.
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(c) The EPVFL of the policy is 300000q(40, 2024)(1.05)−1 − 1570.16, so the EPVFL exceeds $50 if

300000q(40, 2024)(1.05)−1 − 1570.16 > 50

300000q(40, 2024)(1.05)−1 > 1620.16

q(40, 2024) >
1620.16

300000(1.05)−1

m(40, 2024) >
1620.16× 2.1

2× 300000− 1620.16× 1.05

= 0.005686683

log(m(40, 2024)) > −5.169628

log(m(40, 2024)) + 5.2072

0.012348
> 3.042752

so the probability is 1− Φ−1(3.042752) = 0.001172127.

Cairns-Blake-Dowd Models

30
(a) We have that

log

(
q(33, 2048)

1− q(33, 2048)

)
= K

(1)
2048 − 19K

(2)
2048

= K
(1)
2017 − 19K

(2)
2017 + 31(c(1) − 19c(2)) +

31∑
i=1

(σk1Z
(1)
2017+i − 19σk2Z

(2)
2017+i)

= −7.14 +

31∑
i=1

(σk1Z
(1)
2017+i − 19σk2Z

(2)
2017+i)

Now we have that

Var(σk1Z
(1)
2017+i − 19σk2Z

(2)
2017+i) = σk1

2 + 361σk2
2 − 38σk1σk2ρ = 0.3481

so

Var(

31∑
i=1

(σk1Z
(1)
2017+i − 19σk2Z

(2)
2017+i)) = 31× 0.3481 = 10.7911

so

log

(
q(33, 2048)

1− q(33, 2048)

)
∼ N(−7.14, 10.7911)

The median is therefore given by solving
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log

(
q(33, 2048)

1− q(33, 2048)

)
= −7.14

q(33, 2048)

1− q(33, 2048)
= 0.0007927521

1

q(33, 2048)
− 1 = 1261.428

1

q(33, 2048)
= 1262.428

q(33, 2048) = 0.0007921241

The 95th percentile of log
(

q(33,2048)
1−q(33,2048)

)
is −7.14+Φ−1(0.95)

√
10.7911 = −1.736687, so the 95th percentile

of q(33, 2048) is given by solving

log

(
q(33, 2048)

1− q(33, 2048)

)
= −1.736687

q(33, 2048)

1− q(33, 2048)
= 0.1761028

1

q(33, 2048)
− 1 = 5.6785

1

q(33, 2048)
= 6.6785

q(33, 2048) = 0.1497342

(b) From the simulated values we get:
t 201t 2018 2019 2020 2021

K
(1)
t −4.36 −5.203697 −5.323657 −6.351717 −7.493481

K
(2)
t 0.13 0.08674009 0.02933806 −0.02750201 −0.06004049
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This gives us

log

(
q(26, 2017)

1− q(26, 2017)

)
= −4.36− 0.13× (52− 26) = −7.740000

log

(
q(27, 2018)

1− q(27, 2018)

)
= −5.203697− 0.08674009× (52− 27) = −7.372200

log

(
q(28, 2019)

1− q(28, 2019)

)
= −5.323657− 0.02933806× (52− 28) = −6.027771

log

(
q(29, 2020)

1− q(29, 2020)

)
= −6.351717 + 0.02750201× (52− 29) = −5.719170

log

(
q(30, 2021)

1− q(30, 2021)

)
= −7.493481 + 0.06004049× (52− 30) = −6.172590

and thus

q(26, 2017) = 0.0004348824

q(27, 2018) = 0.0006280895

q(28, 2019) = 0.0024050639

q(29, 2020) = 0.0032716939

q(30, 2021) = 0.0020814853

For these values we get ä26:5| = 4.536046 and A26:5| = 1− 0.05
1.05×4.536046 = 0.7839978, and 5p26 = 0.9912070,

so A26:5| = 0.7839978− 0.9912070(1.05)−5 = 0.007361232. The premium is therefore

400000× 0.007361232

4.536046
= $649.13

LM 12 Empirical Estimation

LM 12.1 The Empirical Distribution

31
The probability mass function is

n P (X = n)
0 0.2
1 0.1333
2 0.0667
3 0.2667
4 0.1333
6 0.1333
7 0.0667

The cumulative Hazard rate is
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x H(x) H(x)
0 0.2231436 0.2
1 0.4054651 0.3667
2 0.5108256 0.4667
3 1.0986123 0.9111
4 1.6094379 1.3111
6 2.7080502 1.9778
7 2.9778

32
The Nelson-Åalen estimate is H(5) = 1.31111111, so this gives S(5) = e−1.311111 = 0.2695204.

LM 12.2 The Empirical Distributions for Grouped Data

33
The total number of policies is 1099. 194 are less than $100,000, and 558 are less than $500,000, so

the empirical estimates are F (100000) = 194
1099 and F (500000) = 558

1099 . The ogive then gives F (300000) =
1
2

(
194
1099 + 558

1099

)
= 376

1099 = 0.3421292. So the probability that a random policy would be affected by this tax is
0.6578708.

34
See slides.
35
over the 2000 observations, the total of all values of X ∧ 6000 is 2000 × 1810 = 3, 620, 000. There are 300

observations for which X ∧ 6000 = 6000. The sum of these is therefore 300× 6000 = 1, 800, 000. The total of
the 1700 observations where X is less than 6, 000 is therefore 3, 620, 000 − 1, 800, 000 = 1, 820, 000. The total
of the 30 observations between 6,000 and 7,000 is 200,000, so the total of the 1,730 observations below 7,000 is
2, 020, 000. The total of X∧7000 for the 270 observations above 7,000 is 7000×270 = 1, 890, 000 so the total of
all 2000 observations of X∧7000 is 2020000+1890000 = 3910000, so the average E(X∧7000) = 3910000

2000 = 1, 955.
36
The total number of observations is 200+x+y. The number of observations less than 50 is 36. The number

of observations less than 150 is 36 + x. The number of observations less than 250 is 36 + x+ y. Therefore

Fn(50) =
36

200 + x+ y

Fn(150) =
36 + x

200 + x+ y

Fn(250) =
36 + x+ y

200 + x+ y

Fn(90) =
36 + 0.4x

200 + x+ y
= 0.21

Fn(210) =
36 + x+ 0.6y

200 + x+ y
= 0.51

We therefore need to solve the equations
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36 + 0.4x = 0.21(200 + x+ y)

19x− 21y = 600

36 + x+ 0.6y = 0.51(200 + x+ y)

49x+ 9y = 6600

1200x = 144000

x = 120

y = 80

37
Suppose we are estimating the survival function at x which is in the interval (c1, c2]. The estimate is

S(x) =
c2 − x
c2 − c1

S(c1) +
x− c1
c2 − c1

S(c2)

Let X be the number of observations from a sample of n observations that are less than c1, and let Y be
the number that are between c1 and c2. We then have

Ŝ(x) =
c2 − x
c2 − c1

n−X
n

+
x− c1
c2 − c1

n−X − Y
n

= 1− X(c2 − x) + (X + Y )(x− c1)

c2 − c1
= 1− X

n
− x− c1
c2 − c1

Y

We therefore have that

Var(Ŝ(x)) =
Var(X) +

(
x−c1
c2−c1

)2
Var(Y ) + 2

(
x−c1
c2−c1

)
Cov(X,Y )

n2

We also have that X and Y are multinomially distributed with probabilities 1 − S(c1) and S(c1) − S(c2)
respectively. This means

Var(X) = nS(c1)(1− S(c1))

Var(Y ) = n(S(c1)− S(c2))(1 + S(c2)− S(c1))

Cov(X,Y ) = −n(1− S(c1))(S(c1)− S(c2))

This gives that

Var(Ŝ(x)) =
(c2 − c1)2S(c1)(1− S(c1))− 2(c2 − c1)(x− c1)(1− S(c1))(S(c1)− S(c2)) + (x− c1)2(S(c1)− S(c2))(1 + S(c2)− S(c1))(S(c1)− S(c2))(1 + S(c2)− S(c1))

n(c2 − c1)2

(c2−c1)(1−S(c1))
(
(c2−c1)S(c1)−(x−c1)(S(c1)−S(c2)

)
+(x−c1)(S(c1)−S(c2))

(
(x−c1)(1+S(c2)−S(c1))−(c2−c1)(1−S(c1))

)
(c2−c1)(1−S(c1))

(
(c2−x)S(c1)+(x−c1)S(c2)

)
+(x−c1)(S(c1)−S(c2))

(
(x−c1)(1−S(c1))−(c2−x)(1−S(c1))

)
38
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We compute Ŝ(10000) = 1446
4356 and Ŝ(100000) = 683

4356 . This gives Ŝ(50000) = 5
9 ×

1446
4356 + 4

9 ×
683
4356 = 9962

9×4356 =
0.2541067

The variances are given by

Var(Ŝ(10000)) =
1446× 2910

43563

Var(Ŝ(100000)) =
683× 3673

43563

Cov(Ŝ(10000), Ŝ(100000)) = −2910× 683

43563

Var(Ŝ(50000)) =
92 × 1446× 2910 + 42 × 683× 3673− 2× 9× 4× 1446× 683

43563 × 92
=

237873044

43563 × 81

= 0.00003553011

The standard deviation is
√

0.00003553011 = 0.005960714.
A 95% confidence interval is therefore 0.2541067± 1.96× 0.005960714 = [0.2424237, 0.2657897].

LM 12.3&12.5 Empirical Estimation with Modified Data

39
The probability that a randomly chosen individual survives to more than 1.6 is expressed as the product

11

12
× 13

14
× 15

16
× 14

15
× 11

13
× 9

11
× 7

8
=

11× 9× 7

16× 12× 8
=

231

512
= 0.451171925

40

8

9
=

8

9
>

1

2
8

9
× 8

9
=

64

81
>

1

2
64

81
× 10

12
=

160

243
>

1

2
160

243
× 10

11
=

1600

2673
>

1

2
1600

2673
× 8

10
=

1280

2673
<

1

2

So the median is y5 = 0.8.
41
The cumulative hazard rate funtion is given byH(1.6) = 1

12+ 1
14+ 1

16+ 1
15+ 1

13+ 2
11+ 1

8 = 17160+15015+16016+18480+43680+30030
240240 =

140381
240240 . The survival function is therefore S(1.6) = e−

140381
240240 = 0.5574756

42
The Kaplan-Meier estimator gives Sn(0.5) = 8

9 ×
8
9 ×

10
12 = 160

243 and Sn(1) = 8
9 ×

8
9 ×

10
12 ×

10
11 ×

8
10 = 1280

2673

35



So the conditional probability is
160
243 −

1280
2673

160
243

=
3

11

43
Let the dying times be t1, . . . , tn, and let the corresponding risk sets be r1, . . . , rn. Let the number of

people surviving at each dying time be Xi. Suppose that the true probability of surviving at time ti is pi. The
Kaplan-Meier estimate of the survival probability is therefore

∏n
i=1

Xi
ri

. Since the Xi are independent, we have

E

(
n∏
i=1

Xi

ri

)
=

n∏
i=1

E
(
Xi

ri

)

=

n∏
i=1

pi

so the Kaplan-Meier estimate is unbiassed.
We also have:

E

(
n∏
i=1

Xi

ri

)2

=

n∏
i=1

E
(
Xi

ri

)2

=

n∏
i=1

(
pi(1− pi)

ri
+ p2i

)

so the variance is

n∏
i=1

(
pi(1− pi)

ri
+ p2i

)
−

n∏
i=1

pi
2 =

(
n∏
i=1

pi

)2( n∏
i=1

(
1 +

(1− pi)
piri

)
− 1

)
If we let si be the total survivial probability up to time i, so that si =

∏i
j=1 pj , then this becomes

sn
2

(
n∏
i=1

(
1 +

(si−1 − si)
siri

)
− 1

)
44
Greenwoods formula gives that the variance is
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Var(Sn(yj)) ≈ Ŝ(yj)
2

j∑
i=1

si
ri(ri − si)

=

(
1280

2673

)2(
1

9× 8
+

1

9× 8
+

2

12× 10
+

1

11× 10
+

2

10× 8

)
=

(
1280

2673

)2(
55 + 55 + 66 + 36 + 99

3960

)
= 0.0180089

The 95% confidence interval is therefore

0.4788627± 1.96
√

0.0180089 = [0.2158361, 0.7418893]

45
The confidence interval is

[Sn(1)
1
U , Sn(1)U ]

where

U = e1.96
√

0.0180089
0.4788627 log(0.4788627) = 0.4742837

So the confidence interval is

[0.47886272.108443, 0.47886270.4742837] = [0.2117109, 0.7052276]

46
The Nelson-Åalen estimator is H(5) = 226

1641 + 387
1415 + 290

1028 + 215
738 + 176

523 = 1.321168
The variance of this estimator is then 226

16412 + 387
14152 + 290

10282 + 215
7382 + 176

5232 = 0.001589823
We therefore have

log(Ĥ(5)) = 0.2785162

Var(log(Ĥ(5))) =
0.001589823

1.3211682
= 0.0009108203

So a 95% confidence interval for log(H(5)) is

0.2785162± 1.96
√

0.0009108203 = [0.2193638, 0.3376686]

The corresponding interval for H(5) is

[1.245284, 1.401676]

and the corresponding interval for S(5) is

[0.2461840, 0.2878591]
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LM 12.7 Approximations for Large Data Sets

47
(a) The exact exposure is 1 + 0.7 + 1 + 0.2 + 0.8 + 1 + 0.4 + 1 + 0.4 + 0.8 + 0.2 + 1 + 0.4 + 1 + 0.5 + 0.1 +

0.9 + 0.6 + 0.2 + 0.4 = 12.2 years. There are two deaths in the interval. The estimate for the hazard rate is
therefore 3

12.2 = 0.2459016, and the probability of dying in the year is 1− e−0.2459016 = 0.2180008.
(b) The actuarial exposure is 1 + 0.7 + 1 + 0.2 + 0.8 + 1 + 0.4 + 1 + 0.4 + 0.8 + 0.2 + 1 + 0.4 + 1 + 0.5 + 0.1 +

0.9 + 0.6 + 1 + 1 = 13.6, so the estimate for the probability of dying is 3
13.6 = 0.2205882.

48
Using insuring ages, the table looks like this:

entry death exit entry death exit
61.2 - 64.2 63.0 - 64.0
61.7 - 63.0 61.8 - 64.0
62.4 - 64.1 61.4 - 63.0
60.1 - 62.3 62.6 - 65.6
62.8 - 65.8 61.0 62.4 -
62.0 - 64.3 62.0 63.2 -
63.6 - 66.6 62.0 64.9 -
61.7 - 64.7 62.1 - 63.5
60.2 - 63.0 62.2 62.7 -
60.4 - 62.9 62.8 65.0 -

(a) Now the exact exposure is given by 1 + 0 + 1 + 0 + 1 + 1 + 0.4 + 1 + 0 + 0 + 1 + 1 + 0 + 1 + 0 + 0.2 + 1 +
0.5 + 0 + 1 = 11.1, so the estimated hazard rate is 1

11.1 = 0.09009009 and the estimated probability of dying is
1− e−0.09009009 = 0.08615115.

The actuarial exposure is given by 1+0+1+0+1+1+0.4+1+0+0+1+1+0+1+0+1+1+0.5+0+1 = 11.9
so the estimated probability of dying is 1

11.9 = 0.08403361.
(b) Using an anniversary-to-anniversary study, we ignore all partial units of exposure, so the exposure is

11, which makes q63 = 1
11 = 0.0909.

49
See next slide.
50
(a) The exact exposure is 15+11

2 = 13. The hazard rate is therefore 3
13 = 0.2307692 and the probability of

dying during the year is therefore 1− e−0.2307692 = 0.2060773.
(b) The actuarial exposure is 15 + 5−6

2 = 14.5 and the probability of dying during the year is therefore
3

14.5 = 0.2068966.
51
Now death is the censoring event and withdrawl is the event we are trying to estimate. The exposure is

15 + 5−3
2 = 16 and the probability of withdrawing is therefore 6

16 = 0.375.

LM 12.9 Estimation of Transition Intensities

52
MLE estimates are based on exact exposure. We calculate the total exposure in each state for the data:
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State Exposure Transition to No. observed Intensity

Healthy
1+1+1+0.6+0.8+0.4+0.3+0.4+
0.2 + 0.8 + 0.6 + 0.2 + 0.6 + (0.3 +
0.2) + 0.5 + 0.1 + 0 + 0 + 0.4 + 0 = 9.4

Disabled 3 0.3191489
Surrender 3 0.3191489
Dead 4 0.4255319

Disabled
0+0+0+0+0+0.6+0+0+0+0+0.3+
0+0+0.2+0+0+0.6+1+0.6+0.5 =
3.8

Healthy 2 0.5263158
Surrender 0 0
Dead 2 0.5263158

10.3 The Salary Scale Function

53
(a) Average Salary from age 62–65 is given by 60000(1.0320+1.0321+1.0322)

3 = $111, 650.18

(b) Average Salary from age 62–65 is given by 60000(2.261+2.335+2.400)
3 = $139, 920

(c) for scale in (a) we have 60000(1.0319.6666667+1.0320.6666667+1.0321.6666667)
3 = $110, 445.50

for scale in (b), we can use linear interpolation to estimate s42.33333333 = 2
3 × 1 + 1

3 × 1.036 = 1.012. This

gives a final average salary of 60000(2.261+2.335+2.400)
3×1.012 = $138, 260.87

10.4 Setting the DC Contribution

54
If current salary is 1, final average salary is 1.0332+1.0333+1.0334

3 = 2.653108. The replacement ratio means
the original annuity is worth 1.591865, and the reversionary annuity is worth 0.7959323.

tp65 = e−
∫ t
0
0.000002elog(1.093)(65+t)dt = e

−0.0006476502
[
elog(1.093)s

log(1.093)

]t
0 = e−0.007283007(e

log(1.093)t−1)

The value of the life annuity is given by

a65 =

∫ ∞
0

e−0.007283007(e
log(1.093)t−1)e−log(1.04)tdt = 21.07607

The value of the reversionary annuity is given by

a65|62 =

∫ ∞
0

(
1− e−0.007283007(e

log(1.093)t−1)
)
e−0.005577637(e

log(1.093)t−1)e−log(1.04)tdt = 1.416998

So the EPV of the benefits at the time of retirement is

1.591865× 21.07607 + 0.7959323× 1.416998 = 34.67809

If first monthly salary is x, then we have

x(1 + 1.03
1
12 + . . .+ 1.03

11
12 ) = 1

x
1.03− 1

1.03
1
12 − 1

= 1

x =
1.03

1
12 − 1

0.03
= 0.08220899
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The accumulated value of all salary paid monthly in arrear at the end of 35 years is

0.08220899

420∑
i=1

(1.03)
i
12 (1.06)35−

i
12 = 0.08220899(1.03)35

420∑
i=1

(
1.06

1.03

) i
12

= 0.08220899(1.03)35
(
1.06
1.03

)35 − 1(
1.06
1.03

) 1
12 − 1

= 167.2143

So the percentage of salary needed each month is

34.67809

167.2143
= 20.74%

55
For questions (a), (b), (e), (f) and (g), the employee’s accumulated total is still 34.67809, and the final

average salary is 2.653108.
For (a), the replacement ratio is 34.67809

1.591865×21.07607 × 60% = 62.02%
For (b), the value of the reversionary annuity is

a65|62 =

∫ ∞
0

(
1− e−0.007283007(e

log(1.093)t−1)
)
e−0.01483447(e

log(1.093)t−1)e−log(1.04)tdt = 0.9445889

so the replacement ratio is 34.67809
1.591865×21.07607+0.7959323×0.9445889 × 60% = 60.66%

For (e) the replacement ratio is 34.67809
1.591865×21.07607+0.4775595×1.416998 × 60% = 60.79%

For (f) we have

a65 =

∫ ∞
0

e−0.007283007(e
log(1.093)t−1)e−log(1.03)tdt = 25.05707

The value of the reversionary annuity is given by

a65|62 =

∫ ∞
0

(
1− e−0.007283007(e

log(1.093)t−1)
)
e−0.005577637(e

log(1.093)t−1)e−log(1.04)tdt = 2.080705

so the replacement ratio is 34.67809
1.591865×25.05707+0.7959323×2.080705 × 60% = 50.08%

For (g) we have

a65 =

∫ ∞
0

e−0.08872485(e
log(1.143)t−1)e−log(1.04)tdt = 11.24322

and

a65|62 =

∫ ∞
0

(
1− e−0.08872485(e

log(1.143)t−1)
)
e−0.005577637(e

log(1.093)t−1)e−log(1.04)tdt = 10.30211

so the replacement ratio is 34.67809
1.591865×11.24322+0.7959323×10.30211 × 60% = 79.73%

For (c), the accumulated value of the investments is

0.08220899(1.03)35
(
1.07
1.03

)35 − 1
1.07
1.03 − 1

= 203.264

So the replacement ratio is 203.264
167.2143 × 60% = 72.94%.
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For (e), the accumulated value of the investments is

0.08220899(1.05)35
(
1.06
1.05

)35 − 1(
1.06
1.05

) 1
12 − 1

= 225.7627

but the final average salary is 1.0532+1.0533+1.0534

3 = 5.007159
So the new replacement ratio is 225.7627×2.653108

167.2143×5.007159 × 60% = 42.92%.

10.5 The Service Table

56
(a) See slide
(b) 62.28

4882.68 = 0.01275529

10.6 Valuation of Benefits

57
(a)

ä
(12)
65 =

1

12

∞∑
n=0

(1.05)−
n
12 e−

∫ n
12

0 0.0000023(1.12)65+t dt =
1

12

∞∑
n=0

(1.05)−
n
12 e−0.0000023(1.12)

65 (1.12)
n
12 −1

log(1.12) = 14.18721

The member’s final average salary is 76000 (1.04)16+(1.04)17+(1.04)18

3 = $148, 116.36.
The EPV of the accrued benefit conditional on the individual retiring at age 65 is therefore:

148116.36× 13× 0.01× 14.18721(1.05)−19 = $108, 105.23

(b)

ä
(12)
60 =

1

12

∞∑
n=0

(1.05)−
n
12 e−0.0000023(1.12)

60 (1.12)
n
12 −1

log(1.12) = 15.38250094

The member’s final average salary is 76000 (1.05)11+(1.04)12+(1.04)13

3 = $121, 740.85.
The EPV of the accrued benefit conditional on the individual retiring at age 60 is therefore:

121740.85× 13× 0.01× 15.38250094(1.05)−14 = $122, 957.90

(c)
age probability of retirement EPV of benefits Probability times EPV
60 0.3 122957.90 36887.37
60.5 0.09750441650 121488.95 11845.71
61.5 0.08392282902 118539.50 9948.17
62.5 0.07223304834 115575.19 8348.35
63.5 0.06217156087 112596.85 7000.32
64.5 0.05351155835 109605.47 5865.16
65 0.3306565869 108105.23 35745.71
total 115640.78
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So the EPV of accrued benefits is $115,640.78.
58

We calculate tp65 = e−
∫ t
0
0.000002(1.102)65+t dt = e

−0.000002(1.102)65
(

1.102t−1
log(1.102)

)
= e−0.01136305(1.102

t−1)

ä
(12)
65 = 1

12

∑∞
n=0 e

−0.01136305(1.102
n
12−1)(1.04−

n
12 = 19.69323

(a) If he withdraws today, he receives an annual pension of 75000
(

1.05−2+1.05−1+1
3

)
× 0.02× 15× 1.0222 =

$33, 154.43
The EPV of this is 33154.43× 19.69323×22 p43(1.04)−22

We have 22p43 = e−
∫ 22
0

0.000002(1.102)43+t dt = e
−0.000002(1.102)43

(
1.10222−1
log(1.102)

)
= 0.9900282

So the EPV is $272, 754.94
(b) If the employee withdraws after t years,then his annual salary is 75000(1.05)t, so his accrued withdrawl

benefits have present value 75000(1.05)t × 0.02 × 15(1.02)22−t × 19.6932322−tp43+t(1.04)−22 = 272754.94
tp43

. The

probability density of withdrawl after t years is e−0.07(43+t)tp43
The EPV of the accrued withdrawl benefits paid upon withdrawl before age 60 is∫ 17

0

272754.94

tp43

(
1.05

1.02

)t
e−0.07(43+t)tp43 dt = 272754.94

∫ 17

0

(
1.05

1.02

)t
e−0.07(43+t) dt

= 272754.94e−3.01
∫ 17

0

e(log(1.05)−log(1.02))te−0.07t dt

= 272754.94e−3.01
∫ 17

0

e(log(1.05)−log(1.02)−0.07)t dt

= 272754.94e−3.01
[

e(log(1.05)−log(1.02)−0.07)t

log(1.05)− log(1.02)− 0.07

]17
0

= 272754.94e−3.01
e17(log(1.05)−log(1.02)−0.07) − 1

log(1.05)− log(1.02)− 0.07

= $164572.97

59

We calculate tp65 = e−
∫ t
0
0.0000023(1.12)65+t dt = e

−0.0000023(1.12)65
(

1.12t−1
log(1.12)

)
= e−0.03210402(1.12

t−1)

ä
(12)
65 = 1

12

∑∞
n=0 e

−0.03210402(1.12
n
12−1)(1.05−

n
12 = 14.03364

If the member withdraws at age x, then the salary is 45000(1.04)x−46
(

1.04−1+1.04−2+1.04−3

3

)
, so with the

COLA, the accrued pension has an annual value of 41626.3655×0.015×13(1.04)x−46(1.02)65−x = 11825.14209
(
1.04
1.02

)x−46
,

so the value at age 65 is

165949.787

(
1.04

1.02

)x−46
. Discounting at 5% to the age of withdrawl and at 6% to the present day, gives a conditional present value of

165949.787

(
1.04× 1.06

1.02× 1.05

)x−46
(1.05)46−65 = 65671.96589 (1.029318394)

x−46

The EPV is therefore 65671.96589 (1.029318394)
x−46

65−xp46+x
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We have 65−xp46+x = e
−0.0000023(1.12)65

(
1−1.12x−65

log(1.12)

)
= e−0.03210402(1−1.12

x−65) so the EPV is

65671.96589 (1.029318394)
x−46

e−0.03210402(1−1.12
x−65)

The probability that the member is still enrolled in the plan at age x is e−
∫ x
46
e−0.07y+0.0000023(1.12)y dy =

e−
(e−3.22−e−0.07x)

0.07 −0.00002029494998(1.12x−1.1246) the EPV of accrued pension benefits paid to early withdrawls is
therefore

∫ 60

46

65671.96 (1.02932)
x−46

e−0.03210(1−1.12
x−65)e−0.07xe−

(e−3.22−e−0.07x)
0.07 −0.000020295(1.12x−1.1246)

= 26792.25309

The probability he is still employed at age 60 is e−
∫ 60
46
e−0.07x+0.0000023(1.12)x dx = e−

e−3.22−e−4.2

0.07 −0.0000023 1.1260−1.1246

log(1.12) =
0.6900072247

If this happens, then his final average salary is 45000
(

1.0417+1.0418+1.0419

3

)
= 91208.4928

He has probability 0.3 of retiring at age 60, in which case the expected value of the accrued pension is

91208.4928 × 13 × 0.015ä
(12)
60 = 272954.8931. The EPV of pension benefits from retirements at age 60 is

therefore 272954.8931× 0.3× 0.6900072247(1.06)−14 = 24991.00164.
To simplify, we assume the remaining retirements, except at age 65 happen in the middle of their year. We

get the following:

age P(retire) ä
(12)
x SFin EPV(Pension Benefits)

60.5 0.007984369979 15.22710298 93014.77692 947.3478018
61.5 0.007517395163 14.98002832 96735.3680 860.9124779
62.5 0.007113475961 14.72279172 100604.7827 785.5584389
63.5 0.006768439094 14.45514241 104628.9740 720.0204573
64.5 0.006478882979 14.17684657 108814.1330 663.1949110
65 0.4471424941 14.03363874 110969.0775 44878.8153482
total 48855.84944

So the total EPV of accrued pension benefits is 48855.84944 + 26792.25309 + 24991.00164 = $100, 639.10
60
If the individual retires or withdraws at age x, then career average earnings time years of service is given

by

180000

∫ x−38

0

1.04y dy =
180000

log(1.04)
(1.04x−38 − 1)

The life’s current total pensionable earnings are therefore given by

180000

log(1.04)
(1.046 − 1) = $1, 217, 658

so at an accrual rate of 4%, the annual pension is based on an annual pension rate of 0.04 × 1217658 =
$48, 706.33. We will apply COLA of 2% to this, so if the life starts receiving the pension in t years, then the EPV
of the accrued pension at that time is 48, 706.33(1.02)ta44+t. Mortality is given by µx = 0.0000023(1.12)x, so

tpx = e−
∫ x+t
x

0.0000023(1.12)y dy = e−
0.0000023(1.12)x

log(1.12)
(1.12t−1). This means that ax =

∫∞
0
e

0.0000023(1.12)x

log(1.12)
(1.12t−1)1.05−t dt.
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Numerically, we calculate a65 = 14.14552, so the accrued pension benefits for a life who starts receiving pension
benefits at age 65 are given by 14.14552× 48, 706.33(1.02)21 = $1, 044, 258.

The probability density that the life withdraws at age 44 + t (t < 16) is

tp44e
−
∫ t
0
e−0.07(44+s) dse−0.07(44+t) = tp44e

−e−3.08
(

1−e−0.07t

0.07

)
e−0.07(44+t)

so the EPV of withdrawl benefits is given by

1044258

∫ 16

0
tp44e

−e−3.08
(

1−e−0.07t

0.07

)
e−0.07(44+t)21−tp44+t(1.06)−t(1.05)t−21 dt

=104425821p44

∫ 16

0

e
−e−3.08

(
1−e−0.07t

0.07

)
e−0.07(44+t)(1.06)−t(1.05)t−21 dt

We can evaluate this expression numerically to get∫ 16

0

e
−e−3.08

(
1−e−0.07t

0.07

)
e−0.07(44+t)(1.06)−t(1.05)t−21 dt = 0.121347

This means the EPV of accrued withdrawl benefits is given by

0.1471344× 1044258e
−0.0000023(1.12)44

log(1.12)
(1.1221−1) = $123, 079.2

The probability that the life is still employed at age 60 is

16p44e
− e
−3.08(1−e−1.12)

0.07 = e
−0.0000023(1.12)44

log(1.12)
(1.1216−1)e−

e−3.08(1−e−1.12)
0.07 = 0.632811

This means the probability of retiring at age 60 is 0.632811× 0.3 = 0.1898433. We calculate numerically a60 =
15.34081, so the EPV of accrued benefits from retirement at age 60 is 48706.33× 15.34081(1.02)16(1.06)−16 =
140572.8. The probability of continuing to work past 60 is 0.632811×0.7 = 0.4429677. Given that an employee

continues to work past 60, the probability that they retire at age 65 is 5p60e
−0.06×5 = e−

0.0000023(1.12)60

log(1.12)
(1.125−1)e−0.3 =

0.7306013, so the probability that the life retires at age 65 is 0.7306013×0.4429677 = 0.3236328, so the EPV of
accrued benefits from retirement at 65 is 0.3236328×1044258(1.06)−21 = $99, 411.62. For retirements between
ages 60 and 65, conditional on being alive, retirements happen following an exponential distribution, so for an
individual alive at age 60 + t, who continued working past 60, the probability of not being retired is e−0.06t,
while the density of having retired at age 60+s is 0.06e−0.06s. We can evaluate the EPV of retirement benefits
for individuals aged 60–65 by integrating over all payment times t, and all possible retirement ages s as follows:

44



∫ 5

0
tp60(1.02)16+t

∫ t

0

0.06e−0.06s(1.05)s−t(1.06)−(16+s) ds dt

=

∫ 5

0
tp60

(
1.02

1.06

)16+t ∫ t

0

0.06e−0.06s
(

1.05

1.06

)s−t
ds dt

=

∫ 5

0
tp60

(
1.02

1.06

)16+t(
1.05

1.06

)−t
0.06

0.06 + log
(
1.06
1.05

) (1− e−(0.06+log( 1.06
1.05 ))t

)
dt

=
0.06

0.06 + log
(
1.06
1.05

) ∫ 5

0
tp60

(
1.02

1.06

)16+t(
1.05

1.06

)−t(
1− e−0.06t

(
1.05

1.06

)t)
dt

=
0.06

0.06 + log
(
1.06
1.05

) ∫ 5

0
tp60

(
1.02

1.06

)16+t
((

1.05

1.06

)−t
− e−0.06t

)
dt

= 0.2690331

So the EPV of payments made between ages 60 and 65 is 0.2690331× 48706.33× 0.4429677 = $5, 804.48.
For payments made after age 60 to individuals who retire before age 65, we use a similar integral, but with

the limits of the integral for s ranging from 0 to 5 (since we have already accounted for individuals who retire
at age 65). We calculate∫ ∞

5
tp60

(
1.02

1.06

)16(
1.02

1.05

)t ∫ 5

0

0.06e−0.06s
(

1.05

1.06

)s
ds dt

=
0.06

0.06 + log
(
1.06
1.05

) (1− e−(0.06+log( 1.06
1.05 ))×5

)∫ ∞
5

tp60

(
1.02

1.06

)16(
1.02

1.05

)t
dt

= 0.2534354

∫ ∞
5

tp60

(
1.02

1.06

)16(
1.02

1.05

)t
dt

= 1.517176

The EPV of benefits paid after age 65 to individuals who retire between ages 60 and 65 is therefore
1.517176× 48706.33× 0.4429677 = 32733.57.

The total EPV of all accrued benefits is therefore

123079.2 + 140572.8 + 99411.62 + 5804.48 + 32733.57 = $401, 602

10.7 Funding the Benefits

61
(a) Under the projected unit method, the final average salary is expected to be 47000

(
1.0518+1.0519+1.0520

3

)
=

118860.9184
We have ä

(12)
65 = 13.95103541. Therefore the EPV of accrued benefits for an individual who reaches

retirement age is 118860.9184× 0.02× 26× 13.95103541(1.04)−20 = 393533.8372.

The probability that this individual reaches retirement age is 20p45 = e
−0.0000076

(
1.108765−1.108745

log(1.1087)

)
= 0.948743622.

So the EPV of benefits is 0.948743622× 393533.8372 = 373362.7181.
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After another year, the projected final average salary will still be 113200.8747, so the EPV conditional on
surviving to retirement age will be 118860.9184× 0.02× 27× 13.95103541(1.04)−19 = 425016.5442.

The probability of surviving to retirement age is e
−0.0000076

(
1.108765−1.108746

log(1.1087)

)
= 0.9495331634. The EPV of

benefits at the end of the year is therefore 0.9495331634× 425016.5442 = 403567.3037.
The accumulated value of the reserves at the begining of the year is 373362.7181(1.04) = 388297.2268, so

the annual contribution is 403567.3037− 388297.2268 = $15, 270.08.

(b) Under the traditional unit method, the final average salary is 47000
(

1.05−2+1.05−1+1
3

)
= 44797.43008

The value in the current year is therefore 44797.43008×0.02×26×13.95103541(1.04)−2020p45 = 140716.4818

If the member survives the year, the final average salary in one year’s time is 47000
(

1.05−1+1+1.05
3

)
=

47037.30159 so EPV at the end of next year is 47037.30159 × 0.02 × 27 × 13.95103541(1.04)−2020p45 =
159705.2861.

The accumulated value of the assets funding the benefit at the start of the year is 140716.4818(1.04) =
146345.1411, so the contribution is 159705.2861− 146345.1411 = $13, 360.14.

62
Current reserve
Pension Benefits:
If the individual retires after t years, their final average salary is 87000 (1.06)t−2+(1.06)t−1+(1.06)t)

3 = 82168.39(1.06)t

The pension benefits are therefore 82168.39(1.06)t × 0.12ä46+t:5| These need to be discounted by t years at
i = 0.05. We then take the expectation over possible retirement times to calculate the total EPV of retirement
benefits as ∫ 19

14
tp

00
46µ

02
46+t82168.39(1.06)t × 0.12ä46+t:5|(1.05)−t dt

Deferred Pension Benefits:
Death Benefits:
Next year reserve
Pension Benefits:
Deferred Pension Benefits:
Death Benefits:
Benefits for exits during year
Deferred Pension Benefits:
Death Benefits:
The rate of exit (for ages below 60) is µ01

x +µ02
x = 0.2e−0.04x + 0.00000187(1.130)x so the probability of the

employee remaining employed at age x is

e−
∫ x
46

0.2e−0.04t+0.00000187(1.130)t dt = e
−[ 0.00000187

log(1.130)
(1.130)t− 0.2

0.04 e
−0.04t]

x

46 = e−0.004229764((1.130)
x−46−1)−0.7940871(1−e−0.04(x−46))

If the individual has retired, is at age x and has passed the guaranteed time of the pension, the value of
the pension at that time is R

∑∞
i=0 ipx1.05−i where R is the regular pension payment. We have that

tpx = e−0.00000187(1.13)
x
∫ t
0
es log(1.13) ds = e

−0.00000187(1.13)x
(

(1.13)t−1
log(1.13)

)

This gives that the value of the pension is
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R

∞∑
i=0

e
−0.00000187(1.13)x

(
(1.13)i−1
log(1.13)

)
1.05−i

If the individual retires at age x, with pension value R then the present value of the pension at that time is

R

(
ä5|0.05 +

∞∑
i=5

e
−0.00000187(1.13)x

(
(1.13)i−1
log(1.13)

)
1.05−i

)

and the present value is

(1.05)−19R

(
ä5|0.05 +

∞∑
i=5

e
−0.00000187(1.13)x

(
(1.13)i+65−x−1

log(1.13)

)
1.05−i

)

If the member exits at age x, then the final average salary is 87000(1.06)x−46
(

1+(1.06)−1+(1.06)−2

3

)
=

82168.39(1.06)x−46.
If the member withdraws at age x, then the final average salary is also 82168.39(1.06)x−46, and with COLA,

the eventual accrued pension benefit is 82168.39(1.06)x−46(1.02)65−x = 20400.75(1.039216)x per 100 years of
service.

Since the employee has 12 years of service, the accrued pension beneifit if he withdraws at age x is

2448.090(1.039216)x

The overall expected pension benefit for an individual who withdraws is therefore

∫ 60

46

0.2e−0.04xe−0.004229764((1.130)
x−46−1)−0.7940871(1−e−0.04(x−46)) × 2448.090(1.039216)x×

(1.05)−19

(
ä5|0.05 +

∞∑
i=5

e
−0.00000187(1.13)x

(
(1.13)i+65−x−1

log(1.13)

)
1.05−i

)
dx

= 27393.66

After another year, the expected pension benefit to an individual who withdraws will be

∫ 60

47

0.2e−0.04xe−0.004229764((1.130)
x−46−1)−0.7940871(1−e−0.04(x−46)) × 2448.090(1.039216)x×

(1.05)−19

(
ä5|0.05 +

∞∑
i=5

e
−0.00000187(1.13)x

(
(1.13)i+65−x−1

log(1.13)

)
1.05−i

)
dx

= 25057.95

In addition, annother year will have accrued, so the expected benefit is 13
12 × 25057.95 = 27146.11.

47



(Valued at the present time, not at age 47.)
If the individual is still employed at age 60, and retires at age x, then the present value of the accrued

pension is

0.12× 87000(1 + 1.06−1 + 1.06−2)1.06x−461.0546−x

(
ä5|0.05 +

∞∑
i=5

e
−0.00000187(1.13)x

(
(1.13)i−1
log(1.13)

)
1.05−i

)

Denote this value by P (x). We then have that the expected pension payments to individuals who retire are

14p
(00)
46

(
0.08P (60) + 0.92

∫ 5

0

0.1e
−0.1t−0.00000187(1.13)60

(
(1.13)t−1
log(1.13)

)
P (60 + t) dt+ 19p46P (65)

)
= 12053.6614p

(00)
46

We have that

14p
(00)
46 = e−0.004229764((1.130)

14−1)−0.7940871(1−e−0.04(14)) = 0.6979008

So the expected payments for individuals who retire are 0.6979008× 12053.66 = $8412.26.
The expected payments conditional on being employed at the end of the year are

12053.6613p
(00)
47 = 12053.66× 0.7113312 = 8574.145

.
Multiplying by 13

12 to account for the additional year of service, we get 13
12 × 8574.145 = 9288.66.

Finally, conditional on the individual surviving for the year, the expected death benefits decrease by the
expected death benefits for the year, which is∫ 1

0

0.00000187(1.13)46+te−
0.00000187
log(1.13)

(1.13)46(1.13t−1)−5e−1.84(1−e−0.04t) × 3× 87000(1.06t) dt = 145.47

The increase in the present value of expected benefits is therefore

27146.11− 27393.66 + 9288.66− 8412.26− 145.47 = $483.38

The employee contribution is 4% of 87000, which is $3,480.

Retiree Health Benefits

63
The proportion of benefits accrued depends on the age of retirement. For an individual retiring at age 61,

their benefits should be accrued over a longer period than for an individual retiring aged 60. A more conservative
approach that is sometimes used is to accrue benefits for all retirees up to the minimum retirement age, then
for employees above that age, the benefits are fully paid up, so no normal contribution is necessary.

64
We calculate i∗ = 1.06

1.02×1.05 − 1 = −0.01027077. If the individual retires aged 60, they will have 14 years

of service, and the premium at the time of retirement will be 984(1.05)7 = 1384.59, the EPV at age 60 of the
benefits will be 984(1.05)7 × 42.26993 = 58526.39. The current accrued EPV will be 58526.39(1.06)−7 7

14 =
$19, 461.70 while the accrued EPV after another year will be 58526.39(1.06)−6 8

14 = $23, 576.45. The normal
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contribution is therefore 4114.75(1.06)−1 = $3, 881.85. We calculate similarly for other retirement ages in the
following table:

xr EPV at xr YoS at xr Current Accrued EPV Normal Probability Expected Normal
Accrued EPV in 1 year Contribution Contribution

60 58526.39 14 19461.70 23576.45 3881.85 0.185 718.14
60.5 59038.60 14.5 18410.77 22303.34 3672.23 0.032 117.51
61.5 60046.08 15.5 16525.37 20019.30 3296.16 0.039 128.55
62.5 61038.36 16.5 14887.14 18034.71 2969.40 0.044 130.65
63.5 62012.21 17.5 13453.20 16297.59 2683.39 0.051 136.85
64.5 62965.74 18.5 12190.27 14767.64 2431.48 0.016 38.90
65 63430.00 19 11613.65 14069.11 2316.47 0.580 1343.55

The total normal contribution for the year is therefore
718.14 + 117.51 + 128.55 + 130.65 + 136.85 + 38.90 + 1343.55 = $2, 614.17.

12.3 Profit Testing a Term Insurance Policy

65
See slide.
66
See slide.
67
See slide.

12.5 Profit Measures

68
See slide.

12.6 Using the Profit Test to Calculate the Premium

69
At a risk discount rate of 10%, the NPV is

P

(
(1.04)(1.1)−1 + 0.9996

(
1.1−1 − 1.1−10

0.1

))
− (160 + 56.34(1.1)−1 + 59.24(1.1)−2 + 62.50(1.1)−3 + 66.13(1.1)−4

+69.93(1.1)−5 + 74.11(1.1)−6 + 78.65(1.1)−7 + 83.38(1.1)−8 + 88.83(1.1)−9 + 94.47(1.1)−10) = 6.178837P − 590.908

The premium should be chosen to make this equal to zero. That is

6.178837P − 590.908 = 0

6.178837P = 590.908

P = $95.63
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12.7 Using the Profit Test to Calculate Reserves

70
Recalling Question 65, with a premium of $90, The net outflows without reserves are all positive except for

the final year, where the net outflow is −4.61. To correct for this, the reserve R must satisfy 1.04R = 4.61. This
means R = $4.43. This reserve is a negative cash flow at the end of year 9, so the net cash flow from year 9 is
1.03−4.43 = −3.40. To prevent this negative cash flow, the reserve needs to satisfy 1.04R = 3.40, so R = 3.27.
This is a negative cash flow at the end of year 8, so the net cash-flow in that year is 6.48− 3.27 = 3.21, which
is positive, so reserves of $3.27 in year 9 and $4.43 in year 10 are needed.

12.8 Profit Testing for Multiple-State Models

71
Recall from Question 6 that the probabilities of the life being in each state are:

t tp
00
37 tp

01
37 tp

02
37

0 1 0 0
1 0.99812 0.000375 0.001505
2 0.99617 0.000750 0.003083
3 0.99414 0.001127 0.004736
4 0.99203 0.001505 0.006464
5 0.98985 0.001884 0.008271
6 0.98758 0.002263 0.010156
7 0.98523 0.002644 0.012123
8 0.98280 0.003025 0.014171
9 0.98029 0.003407 0.016303
10 0.97769 0.003790 0.018519

If the life is in the healthy state at the start of year i, and is then aged x, the probability of being sick at
the end is

e

0.000001


−
(
1881 + 1

3 + 77x+ x2
)

375 + 2x 1506 + 1
3 + 75x+ x2

67.5 + x −(342.5 + 3x) 275 + 2x
0 0 0



Probabilities of being sick or dead at the end of each year for a life alive at start of year are
t p0037+t p0137+t p0237+t p1037+t p1137+t p1237+t
0 0.9981204 0.0003745833 0.001504969 0.00006742499 0.9996576 0.0002750037
1 0.9980426 0.0003765658 0.001580836 0.00006842111 0.9996546 0.0002770063
2 0.9979628 0.0003785478 0.001658694 0.00006941708 0.9996516 0.0002790090
3 0.9978809 0.0003805293 0.001738542 0.00007041290 0.9996486 0.0002810119
4 0.9977971 0.0003825102 0.001820380 0.00007140856 0.9996456 0.0002830149
5 0.9977113 0.0003844905 0.001904206 0.00007240405 0.9996426 0.0002850181
6 0.9976235 0.0003864703 0.001990020 0.00007339939 0.9996396 0.0002870214
7 0.9975337 0.0003884495 0.002077823 0.00007439457 0.9996366 0.0002890249
8 0.9974420 0.0003904281 0.002167613 0.00007538957 0.9996336 0.0002910285
9 0.9973482 0.0003924062 0.002259390 0.00007638440 0.9996306 0.0002930323
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t Premium Exp Interest Expected Expected Net Cash
Disability Death Flow

Benefit Benefit
0 200 −200
1 489.45 34.26 29.96666 300.9938 192.75108
2 489.45 34.26 30.12527 316.1673 177.41896
3 489.45 34.26 30.28383 331.7389 161.68881
4 489.45 34.26 30.44234 347.7084 145.56071
5 489.45 34.26 30.60081 364.0759 129.03478
6 489.45 34.26 30.75924 380.8412 112.11110
7 489.45 34.26 30.91762 398.0041 94.78978
8 489.45 34.26 31.07596 415.5646 77.07092
9 489.45 34.26 31.23425 433.5226 58.95464
10 489.45 34.26 31.39249 451.8780 40.44103

t Premium Exp Interest Expected Expected Net Cash
Disability Death Flow

Benefit Benefit
0 200 −200
1 489.45 34.26 79972.61 55.00074 −79503.89
2 489.45 34.26 79972.37 55.40126 −79504.06
3 489.45 34.26 79972.13 55.80181 −79504.22
4 489.45 34.26 79971.89 56.20238 −79504.38
5 489.45 34.26 79971.65 56.60299 −79504.54
6 489.45 34.26 79971.41 57.00362 −79504.70
7 489.45 34.26 79971.17 57.40429 −79504.86
8 489.45 34.26 79970.93 57.80498 −79505.02
9 489.45 34.26 79970.69 58.20571 −79505.18
10 489.45 34.26 79970.45 58.60646 −79505.34

We see that expected cash flows are all negative if the life starts the year in the sick state, and positive if
the life starts the year in the healthy state. We need to calculate separate reserves for each state in the usual
way by working backwards.

For the 10th year, if the life is in the sick state, the expected net cash flow is −$79, 505.34, so the reserve
needed is 79505.34(1.07)−1 = 74304.06.

For a life in the sick state at the start of year 9, the probability that the life is in the sick state at the end
of year 9 is 0.9996306, so the expected reserves needed are 0.9996306× 74304.06 = $74276.61. For a life in the
healthy state at the start of year 9, the probability of being in the sick state at the end is 0.0003924, so the
additional expected cashflow is −0.0003924× 74304.06 = −$29.15691, making the total expected net cash flow
for that year $29.80.

We proceed up the table in this way.
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t Reserve Premium Exp Interest Expected Expected Expected Net Cash
Disability Death Reserve Flow

Benefit Benefit
2 530748.32 489.45 34.26 79972.37 55.40126 488396.64 −567900.70
3 488566.86 489.45 34.26 79972.13 55.80181 443262.32 −522766.54
4 443418.14 489.45 34.26 79971.89 56.20238 394953.03 −474457.41
5 395093.05 489.45 34.26 79971.65 56.60299 343245.02 −422749.56
6 343367.74 489.45 34.26 79971.41 57.00362 269064.28 −348568.98
7 269161.28 489.45 34.26 79971.17 57.40429 208497.72 −288002.58
8 208573.51 489.45 34.26 79970.93 57.80498 143668.64 −223173.66
9 143721.30 489.45 34.26 79970.69 58.20571 74276.61 −153781.79
10 74276.61 489.45 5235.55 79970.45 58.60646 0 −79505.34

There is no need to calculate the reserves for the first year, since we know that the life is in the healthy
state at the start of year 1.

Knowing the reserves needed if the life is in the sick state, we can calculate the reserves as extra expenses
in the healthy state:

t Reserve Premium Exp Interest Expected Expected Expected Expected Net Cash
Disability Death Reserve Reserve Flow

Benefit Benefit Sick Healthy
0 200 21.65 −221.65
1 21.65 489.45 34.26 29.96666 300.9938 198.81 17.11 −23.17
2 17.14 489.45 34.26 30.12527 316.1673 183.98 11.78 −18.34
3 11.80 489.45 34.26 30.28383 331.7389 167.85 6.47 −12.63
4 6.49 489.45 34.26 30.44234 347.7084 150.34 2.15 −6.94
5 2.16 489.45 34.26 30.60081 364.0759 131.34 −2.31
6 489.45 34.26 30.75924 380.8412 103.49 8.62
7 489.45 34.26 30.91762 398.0041 80.61 14.18
8 489.45 34.26 31.07596 415.5646 55.83 21.24
9 489.45 34.26 31.23425 433.5226 29.00 29.95
10 489.45 34.26 31.39249 451.8780 40.44

The resulting profit signature is then
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−221.65× 1 = −221.65

0× 1 = 0

0× 0.99812 = 0

0× 0.99617 = 0

0× 0.99414 = 0

0× 0.99203 = 0

8.62× 0.98985 = 8.53

14.18× 0.98758 = 14.00

21.24× 0.98523 = 20.93

29.95× 0.98280 = 29.43

40.44× 0.98029 = 39.64
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