MATH/STAT 4720, Life
Contingencies II
FALL 2021
Toby Kenney
Formula Sheet

General Mathematics

- Quadratic Formula: Solution to $a x^{2}+b x+c=0$ is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Gamma function: $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha} e^{-x} d x$ satisfies $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$.

Non-parametric Estimators

Greenwood's formula

$$
\operatorname{Var}\left(S_{n}\left(y_{j}\right)\right) \approx S_{n}\left(y_{j}\right)^{2} \sum_{i=1}^{j} \frac{s_{i}}{r_{i}\left(r_{i}-s_{i}\right)}
$$

where

- y_{i} is the i th observed data point in increasing order.
- s_{i} is the frequency of the observation y_{i}
- r_{i} is the size of the risk set at observation y_{i}.

Log-transformed Confidence intervals

$\left[S_{n}(x)^{\frac{1}{v}}, S_{n}(X)^{U}\right]$, where $U=e^{\Phi^{-1}\left(\frac{\alpha}{2}\right)_{S_{n}(x)} \log _{6}\left(S_{n}(x)\right.}$.

- α is the confidence level (so for a 95% confidence interval, $\alpha=0.05$).
- σ is the standard deviation of the estimator $S_{n}(x)$.

Lifetables

Survival Probability of an Individual whose Spouse Dies

Probability of an individual surviving the year their spouse dies at a time unifomly distributed throughout the year.

$$
\left(1-q_{d}\right)\left(\frac{q_{a}}{q_{d}}+\left(\frac{q_{a}-q_{d}}{q_{d}^{2}}\right) \log \left(1-q_{d}\right)\right)
$$

- q_{a} is the probability of dying in the year if the spouse is alive for the whole year
- q_{d} is the probability of dying if the spouse is dead for the whole year.

Relation Between Multiple and Single Decrement Tables

We use

- $p_{x}^{0 i}$ is the probability that a life aged x who starts the year in state 0 ends in state i under the multiple decrement model
- $q_{x}^{(i)}$ is the probability of the i th decrement happening to a life aged x within a year, under a single decrement model.

UDD in the Individual Decrements

$$
\begin{aligned}
& p_{x}^{00}=\prod\left(1-q_{x}^{(i)}\right) \\
& p_{x}^{0 i}=q_{x}^{(i)} \int_{0}^{1} \prod_{j \neq i}\left(1-t q^{(j)}\right) d t
\end{aligned}
$$

For the two-decrement case:

$$
\begin{aligned}
& p_{x}^{00}=\prod\left(1-q_{x}^{(i)}\right) \\
& p_{x}^{01}=q_{x}^{(1)}\left(1-\frac{q^{(2)}}{2}\right) \\
& p_{x}^{02}=q_{x}^{(2)}\left(1-\frac{q^{(1)}}{2}\right)
\end{aligned}
$$

UDD in the Multiple Decrement Table

$$
\begin{aligned}
p_{x}^{00} & =\prod\left(1-q_{x}^{(i)}\right) \\
q_{x}^{(i)} & =1-\left(p_{x}^{00}\right)^{\frac{p^{0 i}}{\sum_{j \neq 0} p^{0 j}}}
\end{aligned}
$$

Stochastic Mortality Improve-

ment Models

Lee-Carter Model

$$
\log (m(x, t))=\alpha_{x}+\beta_{x} K_{t}
$$

where

- $m(x, t)=\frac{q(x, t)}{\int_{0}^{1} t p_{x} d t}$. Under UDD this gives $m(x, t)=\frac{q(x, t)}{1-\frac{q(x, t)}{2}}$.
- K_{t} is given by the stochastic process $K_{t}=$ $K_{t-1}+c+\sigma_{k} Z_{t}$.
- Z_{t} are independant standard normal distributions.

Cairns-Blake-Dowd (CBD) Model

$$
\log \left(\frac{q(x, t)}{1-q(x, t)}\right)=K_{t}^{(1)}+K_{t}^{(2)}(x-\bar{x})
$$

where

- $K_{t}^{(i)}$ is given by the stochastic process $K_{t}^{(i)}=$ $K_{t-1}^{(i)}+c^{(i)}+\sigma_{k_{i}} Z_{t}^{(i)}$.
- $\left(Z_{t}^{(1)}, Z_{t}^{(2)}\right)$ are independant samples from a multivariate normal distribution with $\operatorname{Var}\left(Z_{t}^{(i)}\right)=1$ and $\operatorname{Cov}\left(Z_{t}^{(1)}, Z_{t}^{(2)}\right)=\rho$.

Financial Mathematics

- Accumulated value of an annuity with n terms where payments grow at rate r, and interest is applied at rate i is

$$
\frac{(1+i)^{n}-(1+r)^{n}}{i-r}
$$

