ACSC/STAT 4720, Life Contingencies II

FALL 2021

Toby Kenney

Homework Sheet 3

Due: Thursday 14th October: 14:30

Basic Questions

1. A life aged 62 wants to buy a 5-year term insurance policy. A life-table based on current-year (2021) mortality is:

\overline{x}	l_x	d_x
62	10000.00	157.11
63	9842.89	167.55
64	9675.34	178.46
65	9496.87	189.81
66	9307.06	201.57

The insurance company uses a single-factor scale function $q(x,t) = q(x,0)(1-\phi_x)^t$ to model changes in mortality. The insurance company uses the following values for ϕ_x :

x	ϕ_x
62	0.01
63	0.02
64	0.03
65	0.01
66	0.01

Calculate $\ddot{a}_{62:\overline{5}|}$ at interest rate i=0.06, taking into account the change in mortality.

2. Using the lifetable from Question 1, the insurance company now uses the following mortality scale, $\phi(x, t)$ based on both age and year:

			t		
x	2022	2023	2024	2025	2026
62	0.015	0.015	0.020	0.015	0.020
63	0.045	0.000	0.005	0.020	0.015
64	-0.020	0.005	0.005	0.025	0.010
65	0.025	0.005	0.030	0.015	0.010
66	0.025	0.015	0.040	0.010	0.025

Use this mortality scale to calculate $A_{62:\overline{5}|}^1$ at interest rate i = 0.05.

 $d\phi(x,t)$ $d\phi(x+t,t)$ $\phi(x, 2022)$ xdtdtx, t = 2022x,t=202262 0.019716147074 0.0010174563604 -0.007204115660463 0.002020553601 -0.00342659479530.0026162132756 64 -0.00037267568960.0027308379647 0.006613716415 0.0072757487930.0002926793710 -0.00093610617996566 0.002408521108 -0.00193937098940.0007201245263

3. A life-insurance company has the current mortality scale for 2021:

Current mortality (in 2021) is given in the lifetable in Question 1. The company assumes that from 2031 onwards, we will have $\phi(x,t) = 0.01$ for all x and t. Calculate $\ddot{a}_{62:\overline{5}|}$ at interest rate i = 0.05, using the average of age-based and cohort-based effects.

Standard Questions

4. An insurance company uses a Lee-Carter model and fits the following parameters:

$$c = -0.65$$
 $\sigma_k = 1.4$ $K_{2021} = -3.29$

And the following values of α_x and β_x :

\overline{x}	α_x	β_x
42	-3.445547529	0.2160196693
43	-3.723003508	0.2056043631
44	-3.240526315	0.2319018119
45	-3.213960546	0.2160218805
46	-3.394213139	0.2669114067
47	-3.014411418	0.2324790526
48	-3.275815282	0.2361910612

The insurance company simulates the following values of Z_t :

-0.8654056910 -0.9142362784 -1.2831326166 1.0005379227 0.3053339512 0.1684182795 -0.1596511482

Using these simulated values, calculate the probability that a life aged exactly 42 at the start of 2021 survives for 6 years.