ACSC/STAT 4720, Life Contingencies II

FALL 2021
Toby Kenney
Homework Sheet 4
Due: Thursday 21st October: 14:30

1. An insurance company uses a Lee-Carter model and fits the following parameters:

$$
c=-0.3 \quad \sigma_{k}=1.2 \quad K_{2021}=-2.25 \quad \alpha_{36}=-1.74 \quad \beta_{36}=1.11
$$

It estimates that its reserves are adequate in a given year provided $q(36, t)<$ 0.0034. Calculate the probability that its reserves are still adequate in 7 years' time. Use UDD to calculate the relation between q_{x} and m_{x}.
2. An insurance company uses a Cairns-Blake-Dowd model with the following parameters:

$$
\begin{aligned}
K_{2021}^{(1)} & =-9.37 & K_{2021}^{(2)} & =0.11 & c^{(1)} & =-0.12 \\
\sigma_{k_{1}} & =0.7 & \sigma_{k_{2}} & =0.06 & \rho & c^{(2)}
\end{aligned}=0.0 .4 \quad \bar{x}=46
$$

(a) Use this scale to calculate the median value of $q(33,2029)$.
(b) A life aged 72 will only be approved for life insurance if her mortality is less than 0.1. How long can she wait to purchase a life insurance contract and still have a 70% probability of being approved? [Remember that her age also increases by 1 each year.]

Standard Questions

3. An insurance company uses a Lee-Carter model and fits the following parameters:

$$
c=-0.5 \quad \sigma_{k}=1.3 \quad K_{2021}=-5.12
$$

And the following values of α_{x} and β_{x} :

x	α_{x}	β_{x}
33	-6.788236	0.2228085
34	-6.750172	0.1375526
35	-6.755374	0.1979110
36	-6.720697	0.1529246
37	-6.694897	0.2131581

Using the approximation $m(x, t) \approx q(x, t)$, calculate the probability that a life aged 33 dies at age 35 under this model.
4. An insurance company uses a Cairns-Blake-Dowd model with the following parameters:

$$
\begin{array}{rlrlr}
K_{2021}^{(1)} & =-4.33 & K_{2021}^{(2)} & =0.22 & c^{(1)}
\end{array}=-0.15 \quad c^{(2)}=0.01
$$

It has not yet decided on a suitable value of ρ. The company sells both life insurance and annuity contracts. It's expected profit in 2024 (in millions) is $36+22.4 q(58,2024)-38.8 q(73,2024)$. In order to satisfy the regulators, it needs to ensure that the expected profit has a 95% probability of being positive. For what values of ρ is this achieved?
(i) $\rho<0.24$
(ii) $\rho>0.24$
(iii) $\rho<0.33$
(iv) $\rho>0.33$
(v) $\rho<0.45$
(vi) $\rho>0.45$
(vii) $\rho<0.52$
(viii) $\rho>0.52$

Justify your answer. [You may need to use simulation to numerically estimate the probability of profit.]

