ACSC/STAT 4720, Life Contingencies II

FALL 2021
Toby Kenney
Homework Sheet 5
Due: Thursday 28th October: 14:30

Basic Questions

1. A disability income insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0.0	1.8	-	8	0.0	-	10	15	0.2	2.0	-
2	0.0	2.1	-	9	0.1	1.2	-	16	0.2	2.2	-
3	0.0	2.9	-	10	0.1	2.6	-	17	0.4	3.3	-
4	0.0	3.4	-	11	0.1	3.2	-	18	0.8	-	5
5	0.0	4.0	-	12	0.1	3.5	-	19	0.9	-	10
6	0.0	-	5	13	0.1	4.6	-	20	1.4	7.9	-
7	0.0	-	10	14	0.1	8.3	-	21	1.9	-	5

Using a Kaplan-Meier product-limit estimator:
(a) estimate the probability that a random loss exceeds 2.7 .
(b) estimate the 60th percentile of the distribution.
(c) Use a Nelson-Åalen estimator to estimate the 60th percentile of the distribution.
2. For the data in Question 1, use Greenwood's approximation to obtain a 95% confidence interval for the probability that a random loss exceeds 2.7, based on the Kaplan-Meier estimator.
(a) Using a normal approximation
(b) Using a log-transformed confidence interval.
3. An insurance company records the following data in a mortality study:

entry	death	exit	entry	death	exit	entry	death	exit
66.9	75.1	-	72.2	81.1	-	74.1	-	74.7
72.5	-	74.1	73.3	-	80.3	69.3	75.8	-
73.7	-	76.2	72.2	74.3	-	74.1	-	75.6
72.0	-	75.6	72.5	74.6	-	74.5	-	80.3
70.5	-	84.6	73.7	-	78.9	74.2	-	74.5
74.7	-	75.0	74.1	76.7	-	72.9	81.8	-
67.7	-	76.3	71.9	-	74.4	74.6	74.9	-
71.6	76.6	-	74.6	-	85.1	73.4	-	75.2
72.1	-	74.7	74.2	79.7	-	74.8	-	75.5
71.8	-	74.1	74.9	-	76.4	66.8	-	74.8
71.4	76.2	-	68.0	-	74.3	74.8	-	82.9
69.9	-	76.0	73.4	-	74.8	65.6	76.4	-

Estimate the probability of an individual currently aged exactly 74 dying within the next year using:
(a) the exact exposure method.
(b) the actuarial exposure method.
4. Using the following table:

Age	No. at start	enter	die	leave	No. at next age
82	38	41	8	24	47
83	47	20	10	24	33
84	33	17	11	18	21
85	21	11	10	14	8
86	8	9	8	6	3

Estimate the probability that an individual aged 83 withdraws from the policy within the next year, conditional on surviving to the end of the year.
5. In a mortality study of 40 individuals in a disability income policy, an insurance company observes the following transitions, where state H is healthy, D is disabled, S is surrendered and X is dead.

Entry	State	Time	State	Time	State	Exit	Entry	State	Time	State	Exit		
46.0	D	46.3	S			46.3	46.0	D	46.1	S			46.1
46.0	H					47.0	46.0	D					47.0
46.0	H					47.0	46.0	H					47.0
46.0	H	46.5	D	47.0	H	47.0	46.0	D	46.3	X			47.0
46.0	H	46.2	D			47.0	46.2	H	46.5	D	46.6	X	46.6
46.0	H	46.7	X			46.7	46.3	H					47.0
46.0	H					47.0	46.5	H					47.0
46.0	H					47.0	46.5	H	46.9	D			47.0
46.0	H					47.0	46.5	D					47.0
46.0	H	46.2	S			46.2	46.6	H	47.0	D			47.0
46.0	H					47.0	46.7	D					47.0
46.0	H					47.0	46.8	H					47.0
46.0	H	46.8	S			46.8	46.8	H					47.0
46.0	H	46.6	D			47.0	46.8	D					47.0
46.0	D	46.6	S			46.6	46.8	H	46.8	D			47.0
46.0	H	46.2	S			46.2	46.9	D	46.9	S			46.9
46.0	D					47.0	46.9	H					47.0
46.0	H					47.0	46.9	H					47.0
46.0	D					47.0	47.0	D	47.0	H			47.0
46.0	D	46.3	S			46.3	47.0	H					47.0

Based on these data, estimate the probability that an individual aged 46.4 who is disabled becomes healthy and later dies before reaching age 47 .

Standard Questions

6. For the study in Question 3, use the exact exposure method, and assume that the number of deaths follows a negative binomial distribution with $r=1$ and β equal to the exposure multiplied by probability of dying, to find a 95% confidence interval for q_{74}.
