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Recall that if our objective function f(λ) has a convergent Taylor series

e−λf(λ) =
∑ anλ

n

n!

then we can obtain an unbiassed estimator by

g(x) = ax

Unfortunately, f(λ) = log(λ) does not have a globally convergent Taylor se-
ries, so we cannot use this approach. For large λ, we have that log(x) is a
good approximation for log(λ). Therefore, one possibility is to use a two-stage
approach

g(x) =

{
ax if x < N
log(x) if x > N

where

e−λ log(λ) =
∑ anλ

n

n!

is a Taylor series on the interval [L,N ]. Unfortunately, since this Taylor series
is expanded about 0, we cannot evaluate it here. Instead, we can perform a
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truncation of the Taylor series for log
(
1 +

(
λ
a − 1

))
. That is, we have

log (λ) = log(a) + log

(
1 +

(
λ

a
− 1

))
= log(a) +

∑ (−1)n−1

n

(
λ

a
− 1

)n
e−λ log (λ) =

(∑ (−λ)n

n!

)(
log(a)−

∑ 1

n

(
1− λ

a

)n)
=
∑ (−1)n log(a)λn

n!
−
∑
n,m

(−1)nλn

n!

1

m

(
1− λ

a

)m

=
∑ (−1)n log(a)λn

n!
−
∑
n,m

(−1)nλn

n!

1

m

m∑
k=0

(−1)n−k
(
m

k

)(
λ

a

)k
=
∑ (−1)n log(a)λn

n!
−
∑
n,k

(−1)n+kλn+k

akn!

∞∑
m=k

1

m

(
m

k

)

The inner sum does not converge, so we truncate it at a particular value N
to get

log (λ) ≈ log(a) +

N∑
n=0

(−1)n−1

n

(
λ

a
− 1

)n

e−λ log (λ) ≈
∑ (−1)n log(a)λn

n!
−
∞∑
n=0

N∑
m=1

(−1)nλn

n!

1

m

m∑
k=0

(−1)n−k
(
m

k

)(
λ

a

)k

=
∑ (−1)n log(a)λn

n!
−
∞∑
n=0

N∑
k=0

(−1)kλn+k

akn!

N∑
m=k∨1

1

m

(
m

k

)

=
∑ (−1)n log(a)λn

n!
−
∞∑
n=0

N∑
k=0

(−1)kλn

ak(n− k)!

N∑
m=k∨1

1

m

(
m

k

)

=
∑ (−1)nλn

n!

(
log(a)−

N∑
k=0

(−1)kn!
(n− k)!

a−k
N∑

m=k∨1

1

m

(
m

k

))

For k > 0, we have

N∑
m=k

1

m

(
m

k

)
=

1

k

N∑
m=k

(
m− 1

k − 1

)
=

1

k

(
N

k

)
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This gives us

e−λ log (λ) ≈
∑ (−1)nλn

n!

(
log(a)−

N∑
m=1

1

m
−

N∑
k=1

(−1)kn!
(n− k)!k

a−k
(
N

k

))

This gives us the estimator

g(x) = log(a)−
N∑
m=1

1

m
−

N∑
k=1

(−1)kx!
(x− k)!k

a−k
(
N

k

)
This can work well on an interval [l, u], but not outside that interval. How-

ever, for larger values of x, log(x) can be approximately linear, so it will make
a good estimator for log(λ). We therefore suggest the estimator

g(x) =

{
log(a)−

∑N
m=1

1
m −

∑N
k=1

(−1)kx!
(x−k)!ka

−k(N
k

)
if x 6 c

log(x) if x > c

From some experimentation, it seems that a = 3, N = 8 gives a fairly rea-
sonable approximation in typical cases. Ideally, we would adjust these slightly
based on sample size.

We want to estimate the conditional variance of g(x). For given λ, the
variance of g(x) is

Var(g(x)|λ) = e−λ
∞∑
n=0

λng(n)2

n!
− e−2λ

∞∑
n=0

∞∑
m=0

λn+mg(n)g(m)

n!m!

= e−λ
∞∑
n=0

λng(n)2

n!

(
1− e−λ

n∑
m=0

(
n

m

)
g(m)g(n−m)

g(n)2

)

An easy unbiassed estimator of e−λ λ
n

n! is

z(x) =

{
1 if x = n
0 otherwise

However, this estimator has variance

e−λ
λn

n!

(
1− e−λλ

n

n!

)
which can be relatively high. An alternative estimator is the posterior mean
estimator

zn(x) = 2−(x+n+1)

(
x+ k

k

)
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This has mean

E (zn(X)) = e−λ
∞∑
n=0

λn2−(x+n+1)

n!

(
x+ k

k

)

For the quantity e−2λ λ
n

n! , the unbiassed estimator is

sn(x) = (−1)x−n
(
x

n

)
but this is very high variance. We can attempt to reduce the variance of this es-
timator by taking an average of the values for adjacent values of x. In particular,
we could set the estimator as

sn(x) =
1

2

(
2
⌊
x
2

⌋
n− 1

)
This is approximately unbiassed, but is lower variance.

Note that since g(n) grows slowly, we have that
∑n
m=0

(
n
m

)
g(m)g(n−m) can

be approximated by 2n, we let an =
∑n

m=0 (
n
m)g(m)g(n−m)

2n . Then we are trying
to estimate

∞∑
n=0

e−2λ
2nλn

n!
an

We have that

d

dλ

(
e−2λ

(2λ)n

n!

)
= 2e−2λ

(
(2λ)n−1

(n− 1)!
− (2λ)n

n!

)
This means that for the values of n for which this is largest, it is approximately
a constant function of λ. We can therefore approximate the average value of
this quantity by taking the average of the quantities

e−(λi+λj)
(λi + λj)

n

n!

These quantities can be estimated by

Zn =

{
1 if Xi +Xj = n
0 otherwise

This estimator might be improved by restricting to cases where Xi and Xj are
consistent with the λi = λj . We will take (Xi −Xj)

2 < (Xi +Xj) as our test
for this criterion.

Empirically, this estimator performs fairly well for larger λ, but less well for
small λ. The strict criterion is not ideal. We replace it by a weighted criterion,
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where we give a certain weight to the hypothesis that Xi and Xj come from the
same value of λ. The weight we use is the likelihood ratio:

L =

(
Xi +Xj

2Xi

)Xi
(
Xi +Xj

2Xj

)Xj

In the case where λ is the same for all Xi, this reweighted likelihood
—————————————————————————
which means that our estimator of e−2λ λ

n

n! needs to be most The posterior
estimator

wn(x) = 3−(x+n+1)

(
x+ k

k

)
may be preferable. Indeed we have

E(sn(x)2) =
∞∑
x=0

e−λ
λx

x!

(
x

n

)2

=
e−λ

(n!)2

∞∑
x=0

λx
n∑
k=0

(
n

k

)2

(n− k)! 1

(x− n− k)!

=
e−λ

(n!)2

n∑
k=0

(
n

k

)2

(n− k)!
∞∑
x=0

λx

(x− n− k)!

=
e−λ

(n!)2

n∑
k=0

(
n

k

)2

(n− k)!λn+keλ

=

∑n
k=0

(
n
k

)2
(n− k)!λn+k

(n!)2

=

∑n
k=0 λ

n+k

(n− k)!(k!)2

If we use the posterior mean estimators, then our estimator for the condi-
tional variance becomes:

̂Var(g(x)|λ) =
∞∑
n=0

2−(x+n+1)

(
x+ n

n

)
g(n)2 −

∞∑
n=0

n∑
m=0

3−(x+n+1)

(
x+ n

n

)(
n

m

)
g(m)g(n−m)

= EN∼NB(x+1,1)g(N)2 − EM,N∼NB(x+1,1,1)g(M)g(N)

=
1

2
EM,N∼NB(x+1,1,1) (g(M)− g(N))

2

=
1

2
VarM,N∼NB(x+1,1,1) (g(M)− g(N))

For the multivariate distribution of M and N , we can see that the marginal
distribution is negative binomial with r = x+1 and β = 1, while the conditional
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distribution of N given M = m is negative binomial with r = x +m + 1 and
β = 1

2 . Now if we let S = M + N , then conditional on S, M and N have a
binomial distribution with p = 1

2 , so by symmetry E(g(M)−g(N)|S) = 0. Thus

̂Var(g(x)|λ) = 1

2
VarM,N (g(M)− g(N))

=
1

2
ES (VarM,N (g(M)− g(N)|S))

For large S, we have g(M) = log(M) with high probability, so this variance
becomes

=
1

2
ES (VarN (log(S −N)− log(N)|S))

=
1

2
ES
(
VarN

(
log

(
S

N
− 1

)∣∣∣∣S))
= Var (g(M))− Cov (g(M), g(N))

= E
(
g(M)2

)
− E (g(M)E (g(N)|M))

=
1

2

(
VarM

(
EN |M (g(M)− g(N))

)
+ EM

(
VarN |M (g(M)− g(N))

))
=

1

2

(
VarM

(
g(M)− EN |M (g(N))

)
+ EM

(
VarN |M (g(N))

))
(
x+n+m
n+m

)(
n+m
m

)
=
(
x+n+m

n

)(
x+m
m

)
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