Suppose X follows a mixture of Poisson distributions with mean A where A
has density function m(\).

1 Moments of A

Suppose we know that P(X = n) = p,. We therefore get the equations
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If we replace e~ by its Taylor series, this becomes
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We can now invert this to get the raw moments of A. If we write the
equations in terms of infinite dimensional matrices, they become
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We need the inverse of F. It is easy to see that
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This means we can estimate the raw second moment of A as
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and the mean of A as
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Which give exactly the usual unbiassed estimators. We can apply the same
technique to estimate the moments of log(A)

2 Moments of log(A)

We are interested in estimating the variance of log(A). We therefore perform a
change of variable A = ¢*“. This gives us
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Now we have
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If we let Sy, = Z;’;o %, then we have shown



It is also easy to compute S,, o = e~!. We simplify things by letting T, . = €S, k.
Finally, we will compute
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If we further let R, ; = %, then this recurrence becomes
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We can then compute the following table of values of R,, j
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We can then compute the following table of values of T;, i
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1 2 3 4 5
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We can now compute the LU factorisation:

=W N = O
—_ = = O

10 0 O 0 0 1 -1 0 1 1 -2
11 0 O 0 0 0 1 -1 -2 1 11
12 2 0 0 0 0 0 1 0 -5 -10
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The lower triangular part of this is easily seen to have entries
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and inverse
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This gives us

D SRS,

k=0

Since for any empirical dataset, we must have p, = 0 for all sufficiently large k,

this means that .
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for some fixed m. In particular, g, converges to zero very quickly, so we can




find a solution to UDzx = ¢ by solving z = D~'U~'q. We compute
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and find that (U~1);; is given by the recurrence
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We can now calculate T—! = U~1L~!. which gives
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In particular, we define ¢ = L~'p, and define p = U~ 'q. We also find that
(U1 = (—1)"V,;, where V; ; is given by the recurrence:
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Finally, set

10 1 -2 9 -36
01 -1 5 —20 100
00 1 -3 17 —100
o=00 0o 1 -6 15
00 0 0 1 -—10
00 0 0 0 1

and let 7 = Qq. we are interested in estimating the underlying variance of U,
which is given by ps — 2. We have ps = >, z(lgl)ri and p; = Z” 1Qijq;-
We therefore get
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We can compute T~ as follows:
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‘We now have

Now we have

0o —e" u(n+1)
/ Lw(e“)e“ du = p,

n!

oo

> S" u\ U
[Lag e

Z nk “e' du = py,

In infinite dimensional matrix terms, we are trying to solve Ru = q.



We can now seek to invert this system of equations to calculate the moments
of U.

We can attempt to directly relate these to the falling moments of X. We
have that the kth falling moment of X is
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If we fix [, we see that our recurrence relation for T' gives a polynomial form
in n. We can prove this by recurrence. Suppose that T, ; = Ein:O Cymn™,
then we have

We can check that this is satisfied by C;; = Kl_i(i.). Now since we also
have that Cj o = T;, which we know are the sequence of complementary Bell
numbers, this gives us the triangle C. Thinking again in terms of matrices, if
we let P, ,, =n"™, then we have T,,; = > CimPpm = (PCT),,1, s0 in matrix
form we have T'= PC”, and thus T~! = (CT)~tP~L. Since C is triangular, we
can compute its inverse directly by Gaussian elimination. For the Vandermonde

matrix P,



