We have some latent variable Z, and some noisy estimator X of Z. Suppose
the amount of noise depends on the value of Z. Can we produce a better variance
estimator for Z?

1 Toy example

Suppose that Z has two classes which are known. Suppose for the observations
in class 0, the measurement error is normal with mean 0 and variance 0,2, and
for observations in class 1, the measurement error is normal with mean 0 and
variance o92. Let C be the indicator variable for class 1. In particular, we let
X =7 + E, where F is uncorrelated with Z and follows a normal distribution
with mean 0 and variance o2 if Z is in class 0 and 05?2 if Z is in class 1. We
have

Var(Z) = P(C = 1) Var(Z|C = 1) + P(C = 0) Var(Z|C = 0)
+2P(C = 0)P(C = 1) (E(Z|C = 0) — E(Z|C = 1))?
Furthermore, we have that Var(Z|C' = 1) = Var(X|C = 1) — 092 and
Var(Z|C = 0) = Var(X|C = 0) — 012, so the natual estimator

—

Var(Z) = Var(X) — P(C = 1)05* — P(C = 0)o;>

can be rewritten as

-

Var(Z) = P(C = 1) (Var(?ﬁz 1) - 022) + P(C =0) (Var(ﬁz 1) — 012)

+2P(C = 0)P(C = 1) (E(X]C = 0) - E(X]C = 1))2

Now recall that
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has mean Var(Z|C = 1) + 022 and raw second moment
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We also have that X; — X; = Z; — Z; + E; — Ej;, and we know that F; — I
is normal with mean 0 and variance 2052. We can therefore expand this raw
second moment by noting

E((X: - X))') =E((Zi - 2))" +6(Z - 2,)° (Es - Ej)* + (i - E;)*)
=E((Z - 2))*) +60°E ((Zi - 2)°) + 30"
E ((Xi - X;)% (X - Xk)Q) =E ((Zi — 2 (Zi — Z1)* + (Zi — 23)° (E; — Ex)* + (Zi — Z1)° (E; — Ej)?
+(Zi — Z3) (B; - Bj) (Zi - Zx) (Es — Bg) + (B — E;)*(E; — Ex)?)
=E((Z - 2 (Zi - %)) + 02°E ((Zi = 2;)° + (Zi - 24)")
+E((Bi — Ej)(Bi — Bx))E((Zi — Z3) (Zi — Z1)) + E ((Bi — Ej)*(E; — F
E (X = X0 (X = X0)°) =E (2 = 2 (% = 20° + (% = 2))° (Bx = B)* + (2 — 20)° (Bi — By)?
+ (B — E)(By — El)Q)

=E ((Zi — 7)) (Z — Zl)Q) + 02°E ((Zi —~Z;) + (Zy — Zl)2) T oot

We also have

E((E; — E;)(B; — BEy,)) =E (E;*> — Ei(Ej + Ey,) + E;Ey))
_ 2
= 09
E((E: - E;)*(E; — E)?) = E(E* — E*(E;* + E\* + 4E; Ey) + E;°E}?))
= 30’24 - 20’24 + 024

= 20’24

If we let po? be the variance of the corresponding estimator for Var(Z|C = 1)

based on the true values of Z;, then we see that the variance of Var(X|C = 1)
is

po’ +ao%(6n(n—1)+2n(n—1)(n—2)+2n(n—1)(n—2)(n—3))E ((Zz - Zj)Q)

Note that terms of odd degree vanish.
Recall that our objective is to obtain an estimator for

Var(Z) = P(C = 1) Var(Z|C = 1)+P(C = 0) Var(Z|C = 0)+P(C = 0)P(C = 1) (E(Z|C = 1) — E(Z|C = 0))?

We have that



Var(Z|C = 0) = Var(X|C = 0) — 0,>
Var(Z|C = 1) = Var(X|C = 1) — 09>
E(Z|C =1) - E(Z|C =0) =E(X|C =1) - E(X|C = 0)

The natural choice for estimator is therefore the unbiassed

—

Var(Z) = P(C = 1) (Var(fﬁz 1) - 022) + P(C =0) (Var(?ﬁz 0) 012)

+P(C=0)P(C =1) (E(X]C = 1) - B(X|C = 0))2

o —

However, if 052 is large, then the variance of Var(X|C = 1) is large, so we
may be able to improve the accuracy of the estimation by reducing the weight

o —

of Var(X|C =1). This approach is particularly effective if we have reason to
believe that Var(Z|C = 1) ~ Var(Z|C =1).

2 Variance of Log-transformed A



