
We are dealing with the situation where X follows a mixture of Poisson
distributions, and where we want to estimate the moments of log(Λ), where Λ
is the latent Poisson mean. Since we only have one observation of X for each Λ,
we want to obtain an estimator for log(Λ) from this single observation X. One
approach is the posterior mean estimator. We assume an improper uniform prior
on the interval [a,∞]. The difficulty here is that if we observe the value X = 0,
the posterior distribution will be heavily weighted towards log(Λ) ≈ −∞, which
may lead to bad results. However, from a practical point of view, it is impossible
to distinguish results for very small values of log(Λ), since they are all almost
certain to result in X = 0. We therefore, for convenience choose the lower bound
a to represent the smallest value that we are able to detect (more details on the
choice of a will follow in Section 2.

1 Estimating the Posterior Mean

Let U = log(Λ). Suppose we have chosen the lower bound a. Now the likelihood
of u from X is proportional to e−λλX , where λ = eu. The posterior mean is
therefore ∫∞

a
ue−e

u

eux du∫∞
a
e−eueux du

we can perform a change of variable in the denominator:∫ ∞
a

e−e
u

eux du =

∫ ∞
ea

e−λλx−1 dλ = Γ(x; ea)

an incomplete gamma function. Recall that by integrating by parts, we have

Γ(x; l) = (x− 1)!e−l
(

1 + l +
l2

2
+ · · ·+ lx−1

(x− 1)!

)
For the numerator, we can use integration by parts: if we let

g(x, a) =

∫ ∞
a

ue−e
u

eux du
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then we have

g(x, a) =

∫ ∞
a

(
ue−e

u
)
eux du

=

[
ue−e

u

eux

x

]∞
a

− 1

x

∫ ∞
a

eux
(
e−e

u

− ueue−e
u
)
du

= −ae
−eaeax

x
− 1

x

∫ ∞
a

euxe−e
u

du+
1

x

∫ ∞
a

ueu(x+1)e−e
u

du

= −ae
−eaeax

x
− Γ(x; ea)

x
+
g(x+ 1, a)

x

g(x+ 1, a) = xg(x, a) + Γ(x, ea) + ae−e
a

eax

= x!g(1, a) +
x∑

m=1

x!

m!

(
Γ(m, ea) + ae−e

a

eam
)

= x!g(1, a) + e−e
a

x∑
m=1

x!

m!

(
aeam + (m− 1)!

m−1∑
k=0

eka

k!

)

= x!g(1, a) + e−e
a

(
a

x∑
m=1

x!eam

m!
+

x∑
m=1

m−1∑
k=0

x!eka

k!m

)

= x!g(1, a) + x!e−e
a

(
a

x∑
m=1

eam

m!
+

x∑
k=0

eka

k!

x∑
m=k+1

1

m

)

If we let h(x, a) = g(x,a)
Γ(x,ea) , then the recurrence becomes

h(x+ 1, a) = (h(x, a)x+ 1)
Γ(x, ea)

Γ(x+ 1, ea)
+

ae−e
a

eax

Γ(x+ 1, ea)

From the formula, we have

Γ(x+ 1, ea) = xΓ(x, ea) + e−e
a

exa

giving us the recurrence

h(x+ 1, a) = h(x, a) +
1

x
+

(
a− h(x, a)− 1

x

)
e−e

a

eax

Γ(x+ 1, ea)

To start this recurrence, we need to calculate h(0, a), which is based on
g(0, a) =

∫∞
a
ue−e

u

du. If we let g(0, 0) = c, then we have g(0, a) = c +
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∫ 0

a
ue−e

u

du. We can now expand a Taylor series to get∫ 0

a

ue−e
u

du =

∫ 0

a

u

∞∑
n=0

(−eu)n

n!
du

=

∞∑
n=0

(−1)n

n!

∫ 0

a

uenu du

= −a
2

2
+

∞∑
n=1

(−1)n

n!

([
u
enu

n

]0

a

−
∫ 0

a

enu

n
du

)

= −a
2

2
+

∞∑
n=1

(−1)n

n!

(
−ae

na

n
−
[
enu

n2

]0

a

)

= −a
2

2
+

∞∑
n=1

(−1)n

n!

(
−ae

na

n
− 1− ena

n2

)

= −a
2

2
+ a

∞∑
n=0

(−1)n+1ena

n!n
+

∞∑
n=0

(−1)nena

n!n2
+

∞∑
n=0

(−1)n+1

n!n2

Now we have

d

dx

( ∞∑
n=1

xn

n!n

)
=

∞∑
n=1

xn−1

n!

=
ex − 1

x
∞∑
n=1

xn

n!n
=

∫ x

0

et − 1

t
dt
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and

d

dx

( ∞∑
n=1

xn

n!n2

)
=

∞∑
n=1

xn−1

n!n

= 1 +
1

x

∫ x

0

et − 1

t
dt

∞∑
n=1

xn

n!n2
=

∫ x

0

1 +
1

s

∫ s

0

et − 1

t
dt ds

= x+

∫ x

0

∫ s

0

et − 1

st
dt ds

= x+

∫ x

0

∫ x

t

et − 1

st
ds dt

= x+

∫ x

0

et − 1

t
(log(x)− log(t)) dt

Therefore∫ 0

a

ue−e
u

du = a

∞∑
n=0

(−1)n+1ena

n!n
+

∞∑
n=0

(−1)nena

n!n2
+

∞∑
n=0

(−1)n+1

n!n2

=

∫ 0

−ea

et − 1

t
(a+ log(−t)− log(ea)) dt+

∫ 0

−1

et − 1

t
(log(−t)− log(1)) dt

=

∫ 0

−ea

et − 1

t
log(−t) dt+

∫ 0

−1

et − 1

t
log(−t) dt∫ 0

a

ue−e
u

du =

∫ 1

ea

e−t log(t)

t
dt
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g(x, a) =

∫ ∞
a

ue−e
u

eux du

=

∫ 0

a

ue−e
u

eux du+ g(x, 0)

=

∫ 0

a

u

∞∑
n=0

(−1)nenueux

n!
du+ g(x, 0)

= g(x, 0) +

∞∑
n=0

(−1)n

n!

∫ 0

a

ue(x+n)u du

= g(x, 0) +

∞∑
n=0

(−1)n

n!

([
ue(x+n)u

x+ n

]0

a

−
∫ 0

a

e(x+n)u

x+ n
du

)

= g(x, 0) +

∞∑
n=0

(−1)ne(x+n)a

n!

(
− a

x+ n
+

1

(x+ n)2

)
−
∞∑
n=0

(−1)n

n!(x+ n)2

g(x+ 1, 0) = x!g(1, 0) + x!e−1

(
x∑
k=0

eka

k!

x∑
m=k+1

1

m

)

= x!g(1, 0) + e−1

 x∑
k=0

x∑
m=k+1

∏
l>k,l 6=m

l


= x!g(1, 0) + e−1

 x∑
m=1

m−1∑
k=0

∏
l 6=m

l


= x!g(1, 0) + e−1

 x∑
m=1

m
∏
l 6=m

l


= x!g(1, 0) + e−1

 x∑
m=1

∏
k 6=m

k + x!x



g(x+ 1, 0) = xg(x, 0) + Γ(x, 1)

We also have the recurrence

Γ(x, 1) = (x− 1)!e−1
x−1∑
m=0

1

m!
= (x− 1)Γ(x− 1, 1) + e−1
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Numerically, we get g(1, 0) = 0.2193839.
We have recurrences for the numerator and denominator, but computation-

ally, both increase to infinity for moderate n, so for computational purposes, we
need to derive a recurrence for the ratio.

We have that the numerator satisfies the recurrence

pn+1 = npn + aeane−e
a

+ Γ(n, ea)

while the denominator satisfies

Γ(n+ 1, ea) = nΓ(n, ea) + eane−e
a

This means the ratio is

rn+1 =
pn+1

Γ(n+ 1, ea)
=
npn + aeane−e

a

+ Γ(n, ea)

nΓ(n, ea) + eane−ea

= rn
nΓ(n, ea)

nΓ(n, ea) + eane−ea
+

Γ(n, ea) + aeane−e
a

nΓ(n, ea) + eane−ea

If we define tn = enae−e
a

Γ(n+1,ea) , then our recurrence becomes

rn+1 = rn(1− tn) +
1

n
+

(
a− 1

n

)
tn

Substituting x = ea, we get

tn =
xne−x

e−xn!
∑n
i=0

xi

i!

=
xn

n!∑n
i=0

xi

i!

Now we have

(1− tn)

n∑
i=0

xi

i!
=

n−1∑
i=0

xi

i!

which gives

tn =
x

n
tn−1(1− tn)

tn

(
1 +

x

n
tn−1

)
=
x

n
tn−1

tn =
xtn−1

xtn−1 + n

We see that as a → −∞, we will get atn → 0 and tn → 0, so that our
recurrencurrence becomes tn+1 = tn + 1

n . This means that tn is not sensitive to
the choice of a for n > 1 and a close to −∞. We can simplify calculations by
choosing this limiting value for rn when n > 1.
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2 Choosing the Lower Bound

The choice of lower bound a has a large impact on the posterior mean for
an observation of zero, but a small impact on the posterior mean for other
observations. One way to choose a is to cut off values of λ which will not be
distinguishable in the dataset. For example, if our dataset has size n, and the
parameter is λ = eu, the probability of observing a zero value is e−e

u

, so the
probability of observing all zero values is e−ne

u

. This means that with 95%
confidence, if u is smaller than the solution to e−ne

u

= 0.95, then the dataset
will contain all zeros. We therefore choose to set a to this solution

a = log

(
− log(0.95)

n

)
= −2.970195− log(n)

Recall that our objective is to estimate the underlying variance of log(Λ),
which we plan to estimate as Var(R) − E (Var(R|Λ)). When we set r0, we are
controlling the second term, while creating a bias in our estimator R. Suppose
that we compare our lower bound a with a smaller lower bound a′. The bias
from using a instead of a′ is a − a′. The variance Var(R|Λ = λ) is P (X >

0) Var(R|Λ = λ,X > 0) + P (X = 0)P (X > 0) (E(R|X > 0)− r0)
2
. As always,

this variance will be averaged over all samples, so that the best choice of r0 is
the one such that

d

da
E
(
(a− λ)2

+

)
=

1

n

d

da
E
(
P (X = 0)P (X > 0) (E(R|X > 0)− r0)

2
)

E ((a− λ)+) =
1

n
(E (P (X = 0)P (X > 0) (r0 − E(R|X > 0))))

dr0

da

=
1

n
(r0P (X = 0)P (X > 0)− E (P (X = 0)P (X > 0)E(R|X > 0)))

dr0

da
= P (Λ < a)EΛ<a (P (X = 0)P (X > 0) (r0 − E(R|X > 0)))

+ P (Λ > a)EΛ>a (P (X = 0)P (X > 0) (r0 − E(R|X > 0)))

When Λ < ea, we have that P (X = 0) = e−Λ ≈ 1−Λ, P (X > 0) ≈ Λ− Λ2

2 , and
If we assume E(R|X > 0) ≈ r1 then our expression becomes:

E ((a− λ)+) ≈ 1

n
(r0 − r1)E (P (X = 0)P (X > 0))

dr0

da

Recall that
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r0 =

∫∞
a
ue−e

u

du∫∞
a
e−eu du

dr0

da
=

d

da

(∫∞
a
ue−e

u

du∫∞
a
e−eu du

)

=
ae−e

a ∫∞
a
e−e

u

du− e−ea
∫∞
a
ue−e

u

du(∫∞
a
e−eu du

)2
=

e−e
a∫∞

a
e−eu du

(a− r0)

For very negative u, we have e−e
u ≈ 1, giving

dr0

da
≈ a− r0

c− a

which has solution r0 ≈ a
2 .

E ((a− λ)+) ≈ r0 − r1

2n
E
(
e−Λ − e−2Λ

)

3 Conditional Variance

Having determined that our posterior mean estimate given an observation X =
n is rn, we now need to find the conditional mean of rX when X ∼ Po(λ). This
is given by

m = e−λ
∞∑
n=0

λn

n!
rn

The mean of (rX)2 is given by

s = e−λ
∞∑
n=0

λn

n!
(rn)2

The variance of rX is therefore

s−m2 = e−λ
∞∑
n=0

λn

n!
(rn)2 − e−2λ

∞∑
n=0

∞∑
m=0

λn+m

n!m!
rmrn
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Recall that our recurrence is

rn+1 = rn(1− tn) +
1

n
+

(
a− 1

n

)
tn

where

tn =
e−atn−1

e−atn−1 + n

We expand this recurrence to get

rn+1 = rn(1− tn) +
1

n
+

(
a− 1

n

)
tn

=

(
rn−1(1− tn−1) +

1

n− 1
+

(
a− 1

n− 1

)
tn−1

)
(1− tn) +

1

n
+

(
a− 1

n

)
tn

= rn−1(1− tn−1)(1− tn) +
1

n− 1
(1− tn−1)(1− tn) +

1

n
(1− tn) + a(tn + tn−1(1− tn))

= rn−2sn−2sn−1sn +
1

n− 2
sn−2sn−1sn +

1

n− 1
sn−1sn +

1

n
sn + a(tn + tn−1sn + tn−2sn−1sn)

= · · ·

= r1

n∏
i=1

si +

n∑
i=1

1

i

n∏
j=i

sj + a

n∑
i=1

ti

n∏
j=i+1

sj

where

sn = 1− tn =

∑n−1
i=0

eia

i!∑n
i=0

eia

i!

This gives
n∏

j=i+1

sj =

∑i
k=0

eka

k!∑n
k=0

eka

k!

and

ti

n∏
j=i+1

sj =
eia

i!∑n
k=0

eka

k!

so
n∑
i=1

ti

n∏
j=i+1

sj = 1− 1∑n
k=0

eka

k!

n∑
i=1

1

i

n∏
j=i

sj =

∑n
i=1

∑i−1
k=0

eka

k!i∑n
k=0

eka

k!

=

∑n−1
k=0

∑n
i=k+1

eka

k!i∑n
k=0

eka

k!

If we write τn =
∏n−1
j=0 sj = 1∑n−1

k=0
eka

k!

then we get

rn = r1τn + τn

n−1∑
i=1

1

i

i−1∑
k=0

eka

k!
+ a (1− τn)
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If we let νn =
∑n−1
i=1

1
i

∑i−1
k=0

eka

k! , then we have

νn =

n−1∑
i=1

1

i

i−1∑
k=0

eka

k!

=

n−1∑
i=1

i−1∑
k=0

eka

(k + 1)!
− eka

k!

(
1

k + 1
− 1

i

)

=

n−1∑
i=1

i−1∑
k=0

eka

(k + 1)!
−
n−1∑
i=1

i−1∑
k=0

(i− 1− k)eka

(k + 1)!i

νn+1 = νn +
1

n

n−1∑
k=0

eka

k!

= νn +
1

nτn

νn+1τn+1 = τn+1νn +
τn+1

nτn

= sn

(
τnνn +

1

n

)
= sn

(
sn−1

(
τn−1νn−1 +

1

n− 1

)
+

1

n

)
and

rn = r1τn + τnνn + a (1− τn)

This gives

rkrl = (r1τk + τkνk + a (1− τk))(r1τl + τlνl + a (1− τl))
= τkτl(r1νk − a)(r1νl − a) + τka(r1νl − a) + τla(r1νk − a) + a2

In practice, we will need to estimate the conditional variance from an ob-
servation of X. Given the observation X = n, recall that our posterior density

of Λ is πΛ|X(λ|n) = e−λλn−1∫∞
ea
e−λλn−1 Therefore, the posterior mean of conditional
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variance is∫ ∞
ea

e−λλn−1∫∞
ea
e−λλn−1 dλ

(
e−λ

∞∑
m=0

λm

m!
(rm)2 − e−2λ

∞∑
m=0

∞∑
k=0

λm+k

m!k!
rmrk

)
dλ

=
1∫∞

ea
e−λλn−1 dλ

( ∞∑
m=0

(rm)2

m!

∫ ∞
ea

e−2λλn+m−1 dλ−
∞∑
m=0

∞∑
k=0

rmrk
m!k!

∫ ∞
ea

e−3λλn+m+k−1 dλ

)

=

∞∑
m=0

(rm)2

2n+mm!

Γ
(
n+m; e

a

2

)
Γ(n; ea)

−
∞∑
m=0

∞∑
k=0

rmrk
3n+m+km!k!

Γ
(
n+m+ k; e

a

3

)
Γ(n; ea)

=

∞∑
m=0

(
(rm)2

2n+mm!

Γ
(
n+m; e

a

2

)
Γ(n; ea)

−

( ∞∑
k+l=m

rkrl
3n+mk!l!

)
Γ
(
n+m; e

a

3

)
Γ(n; ea)

)

Now recall that
Γ(x+ 1; l) = xΓ(x; l) + lxe−l

so

Γ
(
n+ 1 +m; e

a

2

)
Γ (n+ 1; ea)

=
(n+m)Γ

(
n+m; e

a

2

)
+ 2−(n+m)e(n+m)ae−

ea

2

nΓ (n; ea) + enae−ea

=
(n+m)Γ

(
n+m; e

a

2

)
nΓ (n; ea)

(1− tn) + 2−(n+m)emae
ea

2 tn

and

Γ
(
n+ 1 +m; e

a

3

)
Γ (n+ 1; ea)

=
(n+m)Γ

(
n+m; e

a

3

)
nΓ (n; ea)

(1− tn) + 3−(n+m)emae
2ea

3 tn

We are assuming that a is small enough that e
a
3 ≈ 0, so our expression for

expected conditional variance becomes

∞∑
m=0

(
(rm)2

2n+m

(
n+m− 1

m

)
−

( ∞∑
k+l=m

rkrl
3n+m

)(
n+m− 1

n− 1, k, l

))

=

∞∑
m=0

(
n+m− 1

m

)(
(rm)2

2n+m
−

( ∞∑
k+l=m

(
m

k

)
rkrl

3n+m

))

=

∞∑
m=0

1

2n+m

(
n+m− 1

m

)
(rm)2 −

∞∑
m=0

(
1

3

)n(
2

3

)m(
n+m− 1

m

) ∞∑
k+l=m

1

2m

(
m

k

)
rkrl

We see that the first term in the first sum is proportional to the probability
mass function of a negative binomial distribution with r = n and β = 1. This
has mean n and variance 2n. In the second sum, it is proportional to the
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probability mass function of a negative binomial distribution with r = n and
β = 2. This has mean n and variance 6n. For large n, we can use a normal
approximation to this, and see that the probability is almost entirely in the
interval n ±

√
300n (5 standard deviations either side of the mean). Since

rm ≈
∑m
k=1

1
k does not change much, we can let this be the range over which

we evaluate the expectation. Since rm can does grow slowly, we will actually
use the range n± 20

√
n.

Finally, the inner sum in the second term is the expectation over a binomial
distribution.

Recalling that rm ≈
∑m−1
i=1

1
i for m > 0, we have that (rm)2 =

∑
i,j

1
ij .

To compute this sum in practice, we need to determine which terms should
be included in the sum.

12


