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Toby Kenney

This handout is designed to cover the basic facts about complex numbers
that will be needed for MATH 3090.

1 Types of Numbers

Probably the first type of numbers you learned about were numbers that repre-
sent the size of a set – i.e. the numbers 0, 1, 2, 3, . . . These are called the natural
numbers, and denoted N. Later, you probably learned to add these numbers –
for example, 2+3=5. This also led on to problems of the form ? + 2 = 5. This
one is easy to solve – ? = 3 is the only solution. However, you were also able to
create problems like ? + 5 = 2. This problem has no solution!

At this point you might have simply moved on, happy in the knowledge that
the equation ?+5 = 2 had no solution. However, at some point many years ago
(possibly around the seventh century AD) a mathematician noticed that while
the equation may have no solution, there are still a lot of things that we can say
that any ? that were a solution would have to satisfy. For example, we could
say ? + 3 = 0, ? + 4 = 1, ? + 6 = 3, and so on. We could also say for instance
that 2× ? + 6 = 0, or that ?× ? = 9. Mathematicians therefore decided to give
a name to this made-up number – they called it -3. When we take the set of all
solutions to equations of the form ? + m = n for m and n natural numbers, we
get the integers: . . . ,−3,−2,−1, 0, 1, 2, 3, . . ., denoted Z.

This same trick of inventing new solutions to problems that were previously
insoluble was applied in other situations. For example, given the problem 3×? =
2, we invent a number 3

2 to be a solution for ?. The set of numbers of the form
n
m where n and m are integers, and m > 0 is called the set of rational numbers,
and denoted Q. (Historically, rational numbers were invented before negative
numbers, but from a certain logical point of view, it makes sense to discuss
negative numbers first.)

Q is good for solving all equations involving just adding and multiplying by
constants. (A collection of numbers for which we can solve all equations of the
form ax+ b = c (where a 6= 0) is called a field.) We also extend the rationals by
allowing limits of sequences, as we saw earlier in the course. This gives us the
real numbers, R.

However, even the real numbers are not sufficient for us to be able to solve
all the equations that we might want to. For example, x2 = −1 has no solution
in the real numbers. To deal with this problem, we invent a new number, which
we call i, with the property that i2 = −1. Once we have invented this number,
we naturally also invent all real multiples of it and all sums of real multiples of
it with real numbers, i.e. we have all numbers of the form a + bi, where a and b
are real numbers. This set is called the complex numbers, and is denoted C. We
call a the real part of the complex number a + bi, and we call b the imaginary
part. Adding, subtracting and multiplying complex numbers is straightforward:
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(a + bi) + (c + di) = a + c + (b + d)i, (a + bi)− (c + di) = a− c + (b− d)i, and
(a + bi)(c + di) = ac + bci + adi + bd(i2) = (ac− bd) + (ad + bc)i. Dividing one
complex number by another is more tricky, and involves an important idea –
the complex conjugate.

Definition 1.1. Given a complex number z = a + bi, its complex conjugate is
the number z = a− bi.

z has the important property that zz = a2 + b2 and z + z = 2a are both
real numbers. This means that it can be used to simplify a lot of expressions
involving complex numbers. For example, given a fraction a+bi

c+di , we can multiply
both the numerator and the denominator by c− di, to get

a + bi

c + di
=

(a + bi)(c + di)
c2 + d2

=
ac− bd

c2 + d2
+

ad + bc

c2 + d2
i

which is the form we used above for complex numbers.

2 Geometry of Complex Numbers

We can think of real numbers as being distances (in a specified direction) along
a line. Complex numbers have two real numbers associated with them – the real
and imaginary parts. We can therefore associate the complex number a+bi with
the point (a, b) in 2-dimensional space. This description of complex numbers is
called the Argand plane. Note that in this plane, the real numbers are exactly
the ones on the horizontal axis (which is therefore called the real line). The
vertical axis is called the imaginary axis, because all the numbers on it are
imaginary. In this plane, the conjugate of a complex number is its reflection in
the real axis.

This geometric point of view allows us to describe a+bi in another way – give
the polar coordinates of the point (a, b). This gives us the following definitions:

Definition 2.1. The modulus |z| of the complex number z = a + bi is the
distance of the point (a, b) from the origin. It is given by |z| =

√
(a2 + b2).

Definition 2.2. The argument of the non-zero complex number z = a + bi is
the anticlockwise angle from the positive real axis to the line segment between
the origin and the point (a, b). It is the value of θ such that cos θ = a√

a2+b2
,

while sin θ = b√
a2+b2

. There are several different values of θ that satisfy this
– in particular, if θ is one possible value for the argument of z, then θ + 2π is
another. The argument of z is generally chosen to lie in some particular range,
usually either (−π, π] or [0, 2π).

For example i has modulus 1, and argument π
2 , −2i has modulus 2 and

argument −π
2 , and 1

2 +
√

3
2 i has modulus 1 and argument π

3 .
The modulus-argument form for complex numbers is not helpful when we add

two complex numbers – we can say little about how the modulus and argument
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of the sum depend on the modulus and argument of the numbers being added.
One important thing that we can say about the modulus of a sum is the triangle
inequality.

Lemma 2.3. If z and w are complex numbers, then |z + w| 6 |z| + |w| and
|z − w| > |z| − |w|.

Proof. Let z = a+ bi and w = c+di. Then |z +w|2 = (a+ c)2 +(b+d)2 = a2 +
b2+c2+d2+2ac+2bd, while (|z|+|w|)2 = a2+b2+c2+d2+2

√
(a2 + b2)(c2 + d2).

However, (ac + bd)2 = a2c2 + b2d2 + 2abcd, and abcd 6 a2d2+b2d2

2 , as a2d2 +
b2c2 − 2abcd = (ad − bc)2 > 0. Therefore, 2ac + 2bd 6 2

√
(a2 + b2)(c2 + d2),

sice the latter term is non-negative. Therefore, |z + w|2 6 (|z| + |w|)2. Since
both are positive, we can take square roots to get |z + w| 6 |z|+ |w|.

To get |z − w| > |z| − |w|, apply |z + w| 6 |z|+ |w| to z − w and w.

Note that equality only holds here if one number is a positive real multiple
of the other.

However, we can express the modulus and argument of a product directly in
terms of the moduli and arguments of the numbers being multiplied. In fact:

Lemma 2.4. |zw| = |z||w|, while arg(zw) = arg(z) + arg(w).

We will prove this in the next section, when it will follow from properties of
the function ez.

3 Sequences and Series of Complex Numbers

Recall that when we defined convergence of sequences of real numbers, all we
needed was a notion of distance between two numbers. Since complex numbers
correspond to points in a plane, we have a natural notion of distance between
them – the distance from z to w is given by |z − w|. This allows us to extend
the definition of convergence of sequences and series to sequences and series of
complex numbers.

Definition 3.1. A sequence zn of complex numbers converges to a complex
number z if (∀ε > 0)(∃N)(∀n > n)(|z − zn| < ε).

Most of the proofs in the course so far work just as well for complex numbers
as for real ones. For example, if a series

∑∞
n=0 zn of complex numbers is such

that
∑∞

n=0 |zn| converges, then
∑∞

n=0 zn converges. This means that the power
series

∑∞
n=0 anzn converges for any complex number z with |z| < R, where R

is the radius of convergence of the series as a series of real numbers.
This explains why some power series have a smaller radius of convergence

than one might expect from looking at just their real part. For example, the
power series

∑∞
n=0

(−1)nx2n

4n+1 (see Homework Sheet 5 question 1) corresponds
to the function 1

x2+4 , which is infinitely differentiable at every real number.
However, 1

x2+4 is not defined at x = 2i, so the radius of convergence is only 2.
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This means that we can extend any function on the real numbers that has a
Taylor series to a function on the complex numbers. An important example of
this is the function ex. We get a function on the whole complex numbers given
by ez =

∑∞
n=0

zn

n! . The identity ex+y = exey holds for all complex numbers, so
we only need to work out the value of eiα for every real α, to be able to calculate
ez for any complex number z. For z = iα, we get eiα = 1 + iα− α2

2 − iα3

3! + . . ..
Since the series is absolutely convergent, we can separate the real and imaginary
terms, to get

eiα =

( ∞∑
n=0

(−1)nα2n

(2n)!

)
+ i

( ∞∑
n=0

(−1)nα2n+1

(2n + 1)!

)

We recognise the two series here as the Taylor series for cos α and sinα respec-
tively. Therefore, we have

eiα = cos α + i sinα

This is a very important formula, which gives us easy proofs of a large number
of trigonometric identities. For example, we can now prove Lemma 6.26 simply
by summing a geometric series, and taking real and imaginary parts.

The formula eiα = cos α + i sinα also explains why the modulus and ar-
gument of complex numbers behave the way they do when we multiply two
complex numbers. Note that |eiα|2 = cos2 α + sin2 α = 1 for any α. Therefore,
eiα is a complex number with modulus 1 and argument α. Given a non-zero
complex number z, we can say z = |z| z

|z| . |z| is a positive real number, while z
|z|

has modulus 1. Therefore, we can write |z| = ex for some real x, and z
|z| = eiα

for some real α in the interval [0, 2π). Thus z = ex+iα. If we have w = ey+iβ ,
then their product is given by zw = ex+y+i(α+β), so |zw| = ex+y = |z||w|, and
arg(zw) = α+β = arg(z)+arg(w) (we might need to add or subtract 2π to get
a value in the correct range for arg(zw)).
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