
Generating Functions

Given a sequence an of numbers (which can be integers, real numbers or even
complex numbers) we try to describe the sequence in as simple a form as pos-
sible. Where possible, the best way is usually to give a closed form – i.e. to
express an as a function of n such as an = 2n − 3n + 2 or an =

(
n
7

)
. This allows

us to calculate a particular value of an easily, and gives us good insights that
will often allow us to prove what we want to about our sequence.

Unfortunately, not all sequences can be described directly by such a for-
mula, and in cases where they can, it is not always easy to find the for-
mula. Therefore, in many cases we describe our sequence by a recurrence,
e.g. an = 3an−1 + 2an−2 − 7, a0 = 2, a1 = 1. The problem with this is that it
doesn’t give us much information about the an – it is impractical to use this
to calculate a1,000,000 using this recurrence for example, and we do not get a
clear insight into how fast the sequence grows. Also, it is difficult to see how
we would change the recurrence relation to get certain related sequences – for
example, given recurrences for sequences an and bn, there is no obvious way to
find a recurrence for the sequence an + bn, or for sequences nan.

Another way we could describe the sequence is to view the an as the co-
efficients of a formal power series f(x) =

∑∞
n=0 anxn. [We call this a formal

power series because for a general sequence an, we might well find that there
is no non-zero value of x for which the sequence converges, so we do not get a
genuine function. In practice, however, this method is most useful when we get
a function f(x) which we can describe explicitly.] f(x) is called the generating
function of the sequence an. This is a slightly abstract way to describe our
sequence – saying an is the coefficient of xn in the power series of f(x). The
justification for this method is that it works in a lot of cases. We will mostly
be using generating functions as an intermediate step when we try to go from
recurrences to sequences.

We will need to perform the following tasks:

1. Find the generating function for a sequence:

(a) given an explicit formula for the terms of the sequence by recognising
the power series.

(b) given an explicit formula for the terms of the sequence by relating it
to a power series that we know.

(c) given a recurrence relation for the sequence.

2. Find an explicit formula for the terms of the sequence:

(a) by spotting a function as one whose Taylor series we know.

(b) by spotting that a function is related to one whose power series we
know.

(c) by partial fractions.
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There are other things that we can do with generating functions, such as find
the sum of a sequence, or the expected value of a random variable, or recurrence
relations satisfied by the sequence.

1 Finding generating functions

1.1 Known Taylor series

The following sequences are examples of Taylor series of well-known functions.

• Let an be the constant sequence an = 1 for all n > 0. The generating
function is f(x) =

∑∞
n=0 xn = 1

1−x for −1 < x < 1.

• Let an = 1
n! for all n > 0. The generating function is f(x) =

∑∞
n=0

xn

n! =
ex.

• Let an =
{

(−1)m

n! ifn = 2m + 1foranintegerm
0 otherwise

for all n > 0. The gen-

erating function is f(x) =
∑∞

m=0
x2m+1

(2m+1)! = sinx.

• Fix m. Let an =
(
m
n

)
. The generating function is

∑∞
n=0

(
m
n

)
xn, but

for n > m, the binomial coefficients are 0, so the generating function is∑m
n=0

(
m
n

)
xn, which, by the binomial theorem is (1 + x)m.

1.2 Deriving new generating functions from old

There are many operations we can perform on a sequence that can be easily
described in terms of its generating functions:

• We can form the sequence an = λnbn, by substituting λx for x in the
generating function of bn, i.e. if bn has generating function g(x) then
an = λnbn has generating function f(x) = g(λx).

[More generally, we can substitute any function for x in the generating
function for bn, and this will give us another function, which will generate
another sequence. However, in many cases, the sequence we get cannot be
easily described from the original sequence. For example, if we substitute
x2 for x, then we get the generating function for the sequence a2n =
bn, a2n+1 = 0. If the function by which we replace x is non-zero when
x = 0, then we may not always get a convergent sum when we substitute,
and thus we will not always get a sequence.]

• Given series an and bn with generating functions f(x) and g(x) respec-
tively, then the generating function for λan + µbn for constant λ and µ is
λf(x) + µg(x).

• We can shift the indices. For example, bn = an−1. If f(x) is the generating
function for an then xf(x) is the generating function for bn.
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• We can differentiate the power series. If f(x) is the generating function
for an then f ′(x) is the generating function for bn = (n + 1)an+1.

• We can combine these to get that if bn = nan, and f(x) is the generating
function for an, then xf ′(x) is the generating function for bn.

• Given series an and bn with generating functions f(x) and g(x) respec-
tively, then the function f(x)g(x) is the generating function for the se-
quence ck =

∑k
i=0 aibk−i.

• We can repeat this multiplication inductively – given sequences a1,n, . . . , ak,n,
with generating functions f1(x), . . . , fk(x), we can take their product f1(x)f2(x) · · · fk(g).
It is the generating function for the sequence bl =

∑
i1+···+ik=l a1,i1a2,i2 · · · ak,ik

.

We can also perform the opposites of these operations, for example, inte-
grating generating functions, but this is not as useful, and will not come up in
this course.

We can use these operations with the power series that we already know to
find generating functions for other sequences.

Examples 1. (i) Let an = n + 1. The generating function is now given by
f(x) =

∑∞
n=0(n+1)xn. This power series is the derivative of

∑∞
n=0 xn+1 = x

1−x ,
which is 1

(1−x)2 .
(ii) Let an = n. The generating function is now given by f(x) =

∑∞
n=0 nxn.

This is obtained from the previous example by shifting indices, which corre-
sponded to multiplying by x, making the generaing function x

(1−x)2 .
Alternatively, we can notice that n = (n+1)−1, so we can get the generating

function as the difference of two generating functions – i.e. f(x) = 1
(1−x)2 −

1
1−x = x

(1−x)2 .
Another way to do this is to multiply the generating function for 1 by itself.
(iii) More generally, if we fix k, and let an =

(
n+k

k

)
, we can observe that(

n+k
k

)
xn is the kth derivative of xn+k

k! , so the generating function is f(x) =
1
k!

(
d
dx

)k
(

1
1−x

)
= 1

(1−x)k+1 .

(iv) If we fix m, and let bn =
(
m
n

)
, we use the binomial theorem to get that

the generating function for bn is g(x) = (1+x)m. We can differentiate this twice
to get that an =

(
n+2

2

)(
m

n+2

)
has generating function f(x) = m(m−1)(1+x)m−2.

1.3 Finding generating functions from a recurrence

So far, the examples have all been sequences where we already know a simple
formula for an, so the generating functions are not a great deal of use. We want
to be able to find the generating function for a sequence given by a recurrence.
We will give an example of how we can do this:

Example 1. an is a sequence given by an = 3an−1 + 7, a0 = 0. [It is not
too difficult to guess the solution to this recurrence directly and prove it by
induction, but for this example we will solve it by generating functions.]
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Let f(x) =
∑∞

n=0 anxn We multiply the recurrence by xn, and sum over all
values of n for which the recurrence holds (n > 1) to get

∞∑
n=1

anxn = 3
∞∑

n=1

an−1x
n +

∞∑
n=1

7xn

We can rewrite these sums: the sum on the LHS is just f(x)− a0 = f(x), while
the first sum on the RHS is x

∑∞
m=0 amxm = xf(x). The last sum on the RHS

is
∑∞

n=1 7xn = 7x
1−x . We therefore get the equation:

f(x) = 3xf(x) +
7x

1− x

which we can solve to get

f(x) =
7x

(1− x)(1− 3x)

The method we used for finding the generating function is as follows:

• Multiply the recurrence by xn.

• Add the resulting equations for each n for which the recurrence is valid.

• Break up into separate sums.

• Some of the series will hopefully be related to the generating function f(x)
that we are looking for in a simple way. The other sums will hopefully
be power series of functions we know (or can work out from functions we
know by the methods in Section 1.2). We substitute what we can for all
the series.

• This will give us an equation for f(x). In the best case, it will be an
equation such that for a fixed value of x we will get an equation in f(x)
that we can solve. In other cases, we may get a differential equation or a
functional equation. (A differential equation is an equation involving f ′(x)
or higher derivatives. A functional equation is one involving evaluating f
at more than one point, e.g. f(x) = xf(x2)−5.) [You will not be required
to solve a differential or functional equation in this course.]

Example 2. If we let Tn be the number of at most binary trees with n nodes,
we can show that it satisfies the recurrence Tn =

∑n−1
i=0 TiTn−1−i for n > 1, and

T0 = 1. We can multiply the recurrence by xn, to get Tnxn =
∑n−1

i=0 TiTn−1−ix
n,

and add them to get
∑∞

n=1 Tnxn =
∑∞

n=1

∑n−1
i=0 TiTn−1−ix

n = x
∑∞

n=1

∑n−1
i=0 TiTn−1−ix

n−1.
If we let f(x) =

∑∞
n=0 Tnxn be the generating function of Tn, then this equation

becomes f(x)− 1 = xf(x)2, which we can solve to get

f(x) =
1±

√
1− 4x

2x
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Example 3.
yn = Ayn−1 + Byn−2

We start by multiplying by xn and summing over n to get

∞∑
n=2

ynxn = A
∞∑

n=1

ynxn+1 + B
∞∑

n=0

ynxn+2

If we let f(x) =
∑∞

n=0 ynxn, this gives f(x) − y0 − y1x = Ax(f(x) − y0) +
Bx2f(x), or f(x)(1− Ax− Bx2) = y0(1− Ax) + y1. If we let 1

α and 1
β be the

roots of the quadratic 1−Ax−Bx2 = 0, assuming they are distinct, (so α and
β are the roots of x2 −Ax−B = 0) this gives us

f(x) =
y0(1−Ax) + y1

(1− αx)(1− βx)

2 Finding a sequence from the generating func-
tion

We have found the generating functions for some sequences given by recurrences.
You may be asking yourself “What use is it?” Often, we will be able to find an
explicit formula for the terms in the sequence.

Sometimes the function will be a function whose Taylor series we already
know – for example ex, (1 + x)α for some α. Sometimes, it will not be exactly
a Taylor series we know, but it will be closely related to one that we know.

Example 4. In the previous section, we found the generating function for
Tn is f(x) = 1±

√
1−4x

2x . We can find the power series for
√

1− 4x as a bino-
mial: it is

∑∞
n=0

( 1
2
n

)
(−4)nxn. To get a power series, we need the numerator

to be divisible by x, so we will try f(x) = 1−
√

1−4x
2x . The power series is

− 1
2

∑∞
n=0

( 1
2

n+1

)
(−4)n+1xn

Observe that
( 1

2
n

)
(−4)n = 1×−1×−3×···×3−2n

2nn! (−4)n = − 2n(1×1×3×···×2n−3)
n! =

−2n (2n−2)!
2n−1(n−1)!n! = −2 (2n−2)!

(n−1)!n!

We therefore have that Tn = (2(n+1)−2)!
(n+1−1)!(n+1)! = −1

n+1

(
2n
n

)
[The sequence Tn is a well-known sequence called the Catalan numbers. It

occurs in a variety of problems in combinatorics.]

2.1 Partial Fractions

When the generating function that we find is a ratio of two polynomials, the
denominator of which factors as a product of linear factors, the easiest way to
find its Taylor series is the method of partial fractions – the idea is that we
can express this rational function as a sum of fractions of the form A

1−bx for
some values of A and b, but these fractions are functions whose Taylor series we
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already know: A
1−bx =

∑∞
n=0 Abnxn, so we can get the Taylor series for their

sum by just adding termwise.
We will show how we do this for the generating function f(x) = 7x

(1−x)(1−3x)

that we calculated in Example 1. Finding the Taylor series by finding all the
derivatives is very messy in this case. However, as we will see, the method of
partial fractions is much easier. The fraction 7x

(1−x)(1−3x) can be expressed as a
sum of two fractions A

1−x + B
1−3x for numbers A and B to be determined. Once

we have it as a sum of these fractions, we can find the Taylor series for each
fraction seperately (which is easy because they are special cases of the Taylor
series for the fraction 1

1−x , which we already know) and then add them.
To find A and B, we simply write out the equation

7x

(1− x)(1− 3x)
=

A

1− x
+

B

1− 3x

and multiply through by (1− x)(1− 3x) to get rid of the fractions. This gives

A(1− 3x) + B(1− x) = 7x

The easiest way to solve this is to make the substitutions x = 1 and x = 1
3 to

get A = − 7
2 and B = 7

2 respectively.
We can now find the Taylor series for f(x) by adding these:

f(x) =
7
2

∞∑
n=0

(3x)n − 7
2

∞∑
n=0

xn =
7
2

∞∑
n=0

(3n − 1)xn

This gives us the explicit formula an = 7
2 (3n − 1).

Example 5. In Example 3, we showed that when an is given by the recurrence,
yn = Ayn−1 + Byn−2, the generating function is

f(x) =
y0(1−Ax) + y1

(1− αx)(1− βx)

where α and β are the roots of t2 −At−B = 0.
We can rewrite this as a partial fraction

f(x) =
C

1− αx
+

D

1− βx

for some C and D.
We therefore get

f(x) =
∞∑

n=0

(Cαn + Dβn)xn

which is the formula we gave in Course 2112.
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