
The disc model of hyperbolic geometry

In (2-dimensional) Euclidean geometry, the points are given by ordered pair of
real numbers. In the disc model of hyperbolic geometry, the points are pairs
(x, y) of real numbers such that x2 + y2 < 1. It will often be convenient to
consider the point (x, y) as the complex number x + iy.

In Euclidean geometry, the length of a path γ is given by integrating the
distance form

√

dx2 + dy2 along γ. In the disc model of hyperbolic geometry,

we instead integrate the distance form
2
√

dx2+dy2

1−x2−y2 along γ. In effect distances

are scaled by the factor 2
1−x2−y2 , so distances are longer further from the origin,

and we can see that the distance to points on the unit circle becomes infinite
(so lines can be extended to an arbitrary length in either direction).

Like in Euclidean geometry, we define the straight lines in hyperbolic geom-
etry to be the shortest curves between their endpoints. From this definition,
we can see that the unique straight line segment between (0, 0) and (a, 0) is the
part of the real axis between those two points:

Lemma 1. The unique hyperbolic straight line between the points (0, 0) and
(a, 0) in the disc model, is the Euclidean straight line between them.

Proof. (non-examinable). Let γ be a curve from (0, 0) to (a, 0). We get that the

length of γ is
∫

γ

2
√

dx2+dy2

1−x2−y2 >
∫

γ
2
√

dx2

1−x2 , which is the length of the straight line

segment from (0, 0) to (a, 0). Equality holds in the above inequality if and only
if y is constantly 0 along the path. Therefore, the part of the real axis between
(0, 0) and (a, 0) is the unique hyperbolic straight line between those points.

Having identified what one hyperbolic straight line looks like in the disc
model, we can determine what all the others look like by studying the isometries
of the disc model of hyperbolic geometry.

Firstly, we note that the hyperbolic distance
2
√

dx2+dy2

1−x2−y2 is rotationally sym-
metric about the origin - i.e., rotation about the origin is an hyperbolic isometry.
Similarly, reflection in a line through the origin is also an hyperbolic isometry.

From this we can deduce:

Lemma 2. Hyperbolic straight lines through the origin are exactly Euclidean
straight lines.

Proof. The image of an hyperbolic straight line through the origin under a
rotation about the origin is another hyperbolic straight line, and in particular,
if the hyperbolic straight line passes through the point z, we can choose a
rotation about 0 that sends z to a real number. Then we know that the unique
hyperbolic line from 0 to z is the Euclidean straight line.

We will show:

Lemma 3. The only hyperbolic isometries that fix the origin are rotations about
the origin and reflections in lines through the origin.
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Proof. (non-examinable). Let f be an hyperbolic isometry that fixes the origin
- i.e. f(0) = 0. We know that the distance of a point from the origin is entirely
determined by its distance from the origin in the disc model. Furthermore, if
two points are the same hyperbolic distance from the origin, then they must be
the same Euclidean distance from the origin in the disc model. (The hyperbolic
line to a point passes through points nearer to the origin in the Euclidean sense,
so the hyperbolic distance from the origin increases with Euclidean distance.)
Therefore, since hyperbolic isometries preserve hyperbolic distances, f must
send every point to a point the same Euclidean distance from the origin. i.e.
|z| = |f(z)| (recall that for a complex number z = x + iy, |z| =

√

x2 + y2)
We also know that f sends hyperbolic straight lines to other hyperbolic straight
lines. In particular, we know that the hyperbolic straight lines through the origin
are exactly Euclidean straight lines through the origin. Therefore, we know that
f sends Euclidean straight lines through the origin to other Euclidean straight
lines through the origin. We just need to show that f preserves the angle
between any two of these lines. For some 0 < r < 1, let z1 and z2 be the points
on two lines through the origin, at distance r from the origin. Let γ be the
arc of a circle of radius r, centred at the origin, between z1 and z2. Since f

preserves distance from the origin, we know that f(γ) is also an arc of a circle
centre 0, radius r. Since f is an isometry, and therefore preserves the length of
curves, the curve f(γ) must have the same length as γ. Since they are both arcs
of circles of radius r, they must subtend the same angle at the origin. This is
the angle between the lines l1 and l2. Therefore, f preserves distance from the
origin, preserves lines through the origin, and preserves the angle between two
such lines. It must therefore be either a rotation about the origin, or a reflection
in a line through the origin.

Now that we know all the isometries that fix the origin, once we have an
isometry that sends a point a to the origin for every point a, we will be able to
determine all hyperbolic isometries - first determine where the origin gets sent;
then after we compose with an isometry that sends that point to the origin, we
get an isometry that fixes the origin, so by the preceding lemma, we know that
this isometry is either a rotation or a reflection.

First, we need to find an hyperbolic isometry sending the point a to the
origin.

Proposition 1. The map z 7→ z−a
az−1 is an hyperbolic isometry that sends the

point a to the origin. It is its own inverse - i.e. applying it twice gives the
identity.

Proof. (non-examinable). First we need to show it is an hyperbolic isometry.

Let f(z) = z−a
az−1 , and let f(z) = g(z)+ ih(z). By differentiating, we get df(z)

dz
=

az−1−a(z−a)
(az−1)2 = aa−1

(az−1)2 . Observe that dg(z)2+dh(z)2 = (dg(z)+idh(z))(dg(z)−

idh(z)) = df(z)df(z). Therefore,
2
√

dg(z)2+dh(z)2

1−g(z)2−h(z)2 =
2
√

df(z)df(z)
1−|f(z)|2 =

2

q
df(z)

dz
dz

df(z)
dz

dz

1−|f(z)|2 =

2

r
(aa−1)2

(az−1)2(az−1)2

1−|f(z)|2
√

dx2 + dy2.
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Now we note that 1−|f(z)|2 = 1−
(

z−a
az−1

) (

z−a
az−1

)

= (az−1)(az−1)−(z−a)(z−a)
(az−1)(az−1) =

aazz+1−aa−zz
(az−1)(az−1) . This gives us that

2

r
(aa−1)2

(az−1)2(az−1)2

1−|f(z)|2 = 2(aa−1)
(aa−1)(zz−1) = 2

1−zz
. This

is exactly the factor we get from the usual hyperbolic metric. Therefore f is an
hyperbolic isometry.

We check that indeed f(a) = 0. We want to check that f is self-inverse.

To do this, we plug the result of f back into f to get f(f(z)) =
z−a

az−1−a

a z−a
az−1−1

=

(z−a)−a(az−1)
a(z−a)−(az−1) = z(1−aa)

1−aa
= z.

Finally, we want to check that f sends the hyperbolic plane (the unit disc) to

itself. Suppose that |z| < 1. We want to show that
∣

∣

∣

z−a
az−1

∣

∣

∣
< 1. This is equivalent

to showing that |z − a| < |az − 1|. Squaring both sides (which is valid because
both sides are positive) reduces this to showing (z−a)(z−a) < (az−1)(az−1),
or equivalently, zz + aa < zzaa + 1, or (1− zz)(1− aa) > 0, which is true since
1 − zz and 1 − aa are both > 0.

We can look at the isometry z 7→ z−a
az−1 in more detail. It can be expressed

as the composite of the three maps:

z 7→ z − 1

a

z 7→
1
a
− a

az

z 7→ z +
1

a

The composite of the first two is z 7→
1
a
−a

az−1 . When we add 1
a

to this, we

get z−a
az−1 . The first and third of these maps are translations. The second is the

composite of an inversion and a reflection in the real axis.

Inversion

r

O

X X′

Consider a circle γ, with centre O and radius r. Consider the transformation
that sends a point X other than the origin to the point X ′ on the line OX , on
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the same side of O as X , such that OX ′.OX = r2. This transformation is called
inversion in γ.

Inversion clearly sends straight lines through O to themselves. It sends
straight lines not through O to circles through O – let l be a straight line
not through O. Drop the perpendicular from O to l, and let the foot of this
perpendicular be P . Let its image under the inversion be P ′. Let Q be another
point on l, and let Q′ be its image.

O
P

P ′

Q

Q′

l

We know that OP.OP ′ = OQ.OQ′ = r2, so P , P ′, Q, and Q′ are concyclic.
Since ∠OPQ = 90◦, we get that ∠OQ′P = 90◦. Therefore, Q′ lies on the circle
with diameter OP ′. This circle is therefore the image of l. (We think of O as
the image of ∞ under the inversion.)

Finally, given a circle S that does not pass through O, the inversion of S

in γ is another circle. Let l1 be the line from O to the centre of S, and let l2
be another line through O that meets S. Let P1 and P2 be the points where l1
meets S, with P1 nearer to O, and let Q1 and Q2 be the points where l2 meets
S, with Q1 nearer to O. Let the images of these points be P ′

1, P ′
2, Q′

1 and Q′
2

respectively.

O
P1 P ′

1

Q1

Q′

1

P2P ′

2

Q2

Q′

2

Since OP1.OP ′
1 = OP2.OP ′

2 = r2, we get that
OP ′

2

OP1
=

OP ′

1

OP2
= r2

OP1.OP2
. This

means that the image of S is an enlargement of S about O. This sends circles
to circles, so the image of S is a circle.

We can now deduce that hyperbolic lines in the disc model are Euclidean
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circles, since they are the images of straight lines through the origin under the
transformation z 7→ z−a

az−1 , which is the composite of a translation, an inversion, a
reflection, and another translation. (In fact it can be expressed as the composite
of just a reflection and an inversion - inversion in the circle with centre 1

a
.) This

means that it sends straight lines to circles (or other straight lines). We know
that it sends 0 to a and we can see where it sends infinity (which we think of
as being a point on the straight line): one way to do this is to observe that as

z → ∞, 1
z
→ 0. Now z−a

az−1 =
1− a

z

a− 1
z

→ 1
a

as 1
z
→ 0. Therefore, the image of a line

through the origin will be a circle passing through the points a and 1
a
. Observe

that a
1
a

= aa is real. This means that the line through a and 1
a

passes through

the origin. This means that the power of the origin with respect to this circle
is 1. Therefore, the tangent to the circle from the origin must have length 1, so
this circle will meet the unit circle (the circle centred at the origin, of radius 1)
at right angles.

We therefore have that general hyperbolic lines in the disc model are circles
that meet the unit circle at right angles.

When performing calculations in the disc model, it is often easier to apply
an isometry of the form z 7→ z−a

az−1 to send a relevant point to the origin, then
use the same isometry on the resulting point if necessary.

Area

The area of a region in the disc model is obtained by integrating 4dxdy
(1−x2−y2)2 over

the region. Recall that in Euclidean geometry we find the area of a region by
integrating dxdy over that region, and that in hyperbolic geometry, lengths are
obtained by multiplying the infinitesimal Euclidean lengths by the scale factor

2
1−x2−y2 . To get areas, we need to multiply by the square of this factor, since a
Euclidean area is the product of two lengths.

In particular, as we shall see, there is a simple formula for the area of an hy-
perbolic triangle. First, we will need a few lemmas about asymptotic hyperbolic
triangles (triangles with a vertex on the boundary of the disc).

Lemma 4. Any two triply asymptotic triangles (triangles with all 3 vertices on
the boundary of the disc) are congruent.

Proof. It is enough to show that any triply asymptotic triangle is congruent
to the triangle with vertices at 1, −1 and i. Let ABC be a triply asymptotic
triangle. Let l be the (hyperbolic) line AB. Pick a point w on l, and apply the
isometry z 7→ z−w

wz−1 , to send w to 0. Now applying a rotation about 0, we can
send l to the real line. Let the image of C under this isometry be C′. Note
that C′ will be on the boundary of the disc because the hyperbolic isometry
sends the boundary of the disc to itself. There is an hyperbolic line from C′

perpendicular to the real axis – if C′ is the point x + iy, then this hyperbolic
line is the Euclidean circle with centre at 1

x
. Let d be the point where this

hyperbolic line meets the real axis. Now we apply the isometry z 7→ z−d
dz−1 (since

d is real, d = d). This isometry preserves the real line - if z is real, then z − d
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and dz − 1 are both real. Since it is an isometry, it preserves angles, so there is
an hyperbolic line from the image C′′ of C′, perpendicular to the real axis at 0.
This must be the imaginary axis. Therefore, C′′ must be either i or −i. If it is
i, we have sent ABC to the triangle with vertices at 1, −1 and i. If it is −i, we
can reflect in the real axis. Therefore, we have shown that ABC is congruent
to the triangle with vertices at 1, −1 and i.

Lemma 5. Any two doubly asymptotic triangles with the same angle at the
non-asymptotic vertex are congruent.

Proof. It is enough to show that any doubly asymptotic triangle with angle θ

is congruent to the triangle with vertices at 0, cos θ
2 + i sin θ

2 and cos θ
2 − i sin θ

2 .
Suppose the non-asymptotic vertex is at a. Apply the isometry z 7→ z−a

az−1 . This
sends the triangle to an asymptotic triangle with one vertex at 0, and angle θ

at 0. Now if we apply the rotation to send one of the vertices to cos θ
2 − i sin θ

2 ,

the other vertex must be sent to either cos θ
2 + i sin θ

2 or cos 3θ
2 − i sin 3θ

2 . In the
first case, we are done. In the second case, we can apply a reflection in the line
through 0 and cos θ

2 − i sin θ
2 to get to the triangle we want.

Proposition 2. The area of a doubly asymptotic hyperbolic triangle with angle
φ radians is π − φ.

Proof. (non-examinable). First we apply an isometry to send the triangle to
the doubly asymptotic triangle with one vertex at the origin, and the two sides
meeting there being the lines at angles ±φ

2 from the positive real axis.
Now if we let γ be the circle forming the third side of the hyperbolic triangle,

and let A be the interior of the triangle. We find the hyperbolic area by inte-
grating

∫ ∫

A
4dxdy

(1−x2−y2)2 . Converting to polar coordinates, we get
∫ ∫

A
4rdrdθ
(1−r2)2 .

Let f(θ) be the length of the line segment in A at angle θ from the posi-

tive real axis. The area is then
∫

φ
2

−φ
2

∫ f(θ)

0
4r

(1−r2)2 drdθ. For the inner integral,

note that d
dr

(

1
1−r2

)

= 2r
(1−r2)2 . Therefore,

∫ f(θ)

0
4r

(1−r2)2 dr =
[

2
1−r2

]f(θ)

0
=

2
(

1
1−f(θ)2 − 1

)

= 2 f(θ)2

1−f(θ)2 .

We can calculate f(θ) as a function of θ. Firstly, we let L be the distance
from the origin to the centre of γ. Since the tangent from the origin to γ has
length 1, and is at an angle φ

2 from the line between the origin and the centre
of γ, we get that L = 1

cos φ
2

. Now we consider the line l through the origin at

angle θ to the positive real axis (which goes through the centre of γ).
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O

P ′

P

Since the origin has power 1 with respect to γ, the distances from the origin
to the points where l meets γ are f(θ) and 1

f(θ) . We can drop the perpen-

dicular from the centre of γ to l: it will meet l at the midpoint of the points

of intersection of l and γ. Therefore, we get that
f(θ)+ 1

f(θ)

2 = L cos θ. Mul-
tiplying by f(θ), we get the quadratic equation f(θ)2 − 2L cos θf(θ) + 1 = 0.
We can solve this to get f(θ) = L cos θ −

√
L2 cos2 θ − 1 (we take this solution

because we know that f(θ) 6 1). From this we get f(θ)2 = 2L2 cos2 θ − 1 −
2L cos θ

√
L2 cos2 θ − 1, and 1−f(θ)2 = 2−2L2 cos2 θ+2L cosθ

√
L2 cos2 θ − 1 =

2
√

L2 cos2 θ − 1(L cos θ −
√

L2 cos2 θ − 1) = 2f(θ)
√

L2 cos2 θ − 1. We therefore

get f(θ)2

1−f(θ)2 = L cos θ−
√

L2 cos2 θ−1
2
√

L2 cos2 θ−1
= L cos θ

2
√

L2 cos2 θ−1
− 1

2

The area is therefore
∫

φ
2

−φ
2

(

L cos θ√
L2 cos2 θ−1

− 1
)

dθ. This equals 2
∫

φ
2

0
L cos θ√

L2 cos2 θ−1
dθ−

φ.
We now make the substitution α =

√
L2 cos2 θ − 1. We get that dα

dθ
=

− L2 sin θ cos θ√
L2 cos2 θ−1

. Therefore, the integral becomes

−
∫

√
L2 cos2 φ

2 −1

√
L2−1

L

sin θ
dα =

∫

√
L2−1

√
L2 cos2 φ

2 −1

L

sin θ
dα

We need to express sin θ in terms of α. Now sin θ =
√

1 − cos2 θ =
√

1 − α2+1
L

,

so the integral is
∫

√
L2−1√
L2 cos2 φ

2
−1

1√
L2−1−α2

dα. We note that since L = 1

cos φ
2

,

L2 cos2 φ
2 − 1 = 0.

Now we make the substitution β = α√
L2−1

to get
∫ 1

0

√
L2−1√

L2−1
√

1−β2
dβ =

∫ 1

0
1√

1−β2
dβ =

[

sin−1 β
]1

0
= π

2 − 0 = π
2 . Therefore, the area of the hyperbolic

triangle is π − φ.

From this, we can deduce the formula for the area of a singly asymptotic
triangle, and a non-asymptotic triangle:

Proposition 3. The area of a singly asymptotic triangle with angles α and β

radians is π − α − β.
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Proof. Let ABC be a singly asymptotic triangle, with A a point on the boundary
of the disc. Extend BC past C to meet the boundary of the disc at D.

O

A

B C

D

Now the area of the singly asymptotic triangle ABC is the area of the doubly
asymptotic triangle ABD minus the area of the doubly asymptotic triangle
ACD. The triangle ABD has angle α, while the triangle ACD has angle π−β.
Therefore the area of triangle ABD is π − α, and the area of triangle ACD is
π − (π − β) = β. The area of triangle ABC is therefore π − α − β.

Proposition 4. The area of an hyperbolic triangle with angles α, β and γ is
π − α − β − γ.

Proof. Let ABC be an hyperbolic triangle with angles α at A, β at B and γ at
C. Extend BC past C to meet the boundary of the disc at D.

O

A

B C

D

The area of ABC is the area of ABD minus the area of ACD. Let ∠CAD =
δ. Then the area of 4ABD is π − α − β − δ, and the area of 4ACD is
π − (π − γ) − δ = γ − δ, so the area of 4ABC is π − α − β − γ.
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