
MATH 3090, Advanced Calculus I
Fall 2006

Mock Final Examination
Model Solutions

1 Which of the following series of functions converge uniformly on the in-
terval (0,1)? Justify your answers.

(a)
∑∞

n=1 xn

This does not converge uniformly on the interval (0, 1), since
∑∞

n=N xn =
xN

1−x , so if ε = 1, given any N , we can choose x =
(

1
2

) 1
N , then xN

1−x > 1
2(1−x) ,

and 1−x 6 1
2 , so

∑∞
n=N xn > ε, so the series does not converge uniformly.

(b)
∑∞

n=1 xn(1− x)2

We can show that xn(1 − x)2 is maximised when x = n
n+2 (either by

differentiating, or by using the AM-GM inequality). We therefore have
xn(1 − x)2 6 nn

(n+2)n+2 6 1
(n+2)2 . Therefore, by the Weierstrass M-test,

with Mn = 1
(n+2)2 ,

∑∞
n=1 xn(1− x)2 converges uniformly.

2 Find the radius of convergence of each of the following power series. Do
they converge at the points where |x| is equal to the radius of convergence?

(a)
∑∞

n=2
(−1)nx2n

n log n

The ratio of consecutive terms is (−1)nx2n(n+1) log(n+1)
(−1)n+1x2n+2n log n = − (n+1) log(n+1)

x2n log n .

However, (n+1) log(n+1)
n log n → 1 as n →∞ (it’s less than (n+1)2

n2 , which is less
than 1 + 3

n ) so the ratio of consecutive terms tends to x2. Therefore, by
the ratio test, the series converges whenever |x| < 1, and diverges when
|x| > 1, so the radius of convergence is 1. When |x| = 1, the series becomes∑∞

n=2
(−1)n

n log n , which converges by the alternating series test. ( 1
n log n is

clearly a decreasing function of n, since n log n is an increasing function
of n.)

3 Which of the following series converge? For series which converge, is
the convergence absolute? Justify your answers. (You may assume con-
vergence of geometric series and

∑∞
n=1

1
np for p > 1, and divergence of∑∞

n=1
1

np for p 6 1.)

(a)
∑∞

n=0
n
√

n
n2+3n+6
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This series diverges by comparison to
∑∞

n=4
1

n+2 – for n > 4, we have that

n
√

n > n + 2, while n2 + 3n + 6 6 (n + 2)2, so for n > 4, n
√

n
n2+3n+6 > 1

n+2 .

(b)
∑∞

n=2 log(n2)− log(n2 − 1)

n2 − 1 = (n + 1)(n − 1), so log(n2 − 1) = log(n + 1) + log(n − 1), and
so log(n2) − log(n2 − 1) = 2 log n − log(n + 1) − log(n − 1). Therefore,∑N

n=2 log(n2)− log(n2 − 1) = − log(N + 1) + log(N) + log 2− log 1, since
the middle terms all cancel. Now, as N →∞, log(N)− log(N +1) → 0, so
the series converges (and its limit is log 2). The convergence is absolute,
since all terms are positive.

(c)
∑∞

n=1
(−1)n(2n)!
22n(n!)2 [Hint: Recall the duplication formula: Γ(2x) = Γ (x) Γ

(
x + 1

2

)
22x−1π−

1
2 .]

(2n)! = Γ(2n + 1) = Γ
(
2
(
n + 1

2

))
= Γ

(
n + 1

2

)
Γ(n + 1)22nπ−

1
2 , so the

series becomes
∑∞

n=1

Γ(n+ 1
2 )π−

1
2

Γ(n+1) , and we know that Γ(x+α)
Γ(x)xα → 1 as x →

∞, so the series
∑∞

n=1
(−1)n(2n)!
22n(n!)2 is approximately

∑∞
n=1

(−1)n

√
π(n+ 1

2 )
1
2
, which

does not converge absolutely. However, given two consecutive terms for n

and n + 1, the ratio of their moduli is (2n+1)(2n+2)
(2n+2)2 , which is always less

than 1, so the terms of the series are decreasing in modulus, so by the
alternating series test, the series converges.

4 Show that if a series
∑∞

n=0 an converges absolutely, then it converges.

Given ε > 0, there is an N such that
∑∞

n=N |an| < ε. For, m1,m2 >
N , we have |

∑m1
n=0 an −

∑m2
n=0| =

∣∣∑m2
n=m1+1 an

∣∣ 6
∑m2

n=m1+1 |an| 6∑∞
n=N |an| < ε, so the series is Cauchy, and therefore, it converges.

5 Find the Fourier series for the following functions: [You may use either
the

∑∞
n=−∞ cneinx or the 1

2a0 +
∑∞

n=0 an cos(nx)+bn sin(nx) form for the
Fourier series]

(a) f(x) = x2 − 2x− π2 for −π < x 6 π, and f 2π-periodic.

∑∞
n=−∞ cneinx:

The coefficients cn are given by:

cn =
1
2π

∫ π

−π

(
x2 − 2x− π2

)
e−inxdx

=
1
2π

([(
x2 − 2x− π2

)
e−inx

−in

]π

−π

−
∫ π

−π

(2x− 2)
e−inx

−in
dx

)
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=
1
2π

(
(−1)n4π

−in
−
[
(2x− 2)e−inx

−n2

]π

−π

+
∫ π

−π

2
e−inx

−n2
dx

)

= (−1)n 2
−in

+ (−1)n 2
n2

for n 6= 0. For n = 0, c0 = 1
2π

∫ π

−π

(
x2 − 2x− π2

)
dx = π2 − π2 = 0.

Therefore, the Fourier series is f(x) =
∑

n 6=0(−1)n
(

2
−in + 2

n2

)
einx.

1
2a0 +

∑∞
n=0 an cos(nx) + bn sin(nx):

The coefficients an are given by

an =
1
π

∫ π

−π

(
x2 − 2x− π2

)
cos(nx)dx =

1
π

∫ π

−π

(
x2 − π2

)
cos(nx)dx

=
1
π

([
(x2 − π2) sin(nx)

n

]π

−π

−
∫ π

−π

2x sin(nx)
n

dx

)

=
1
π

([
2x cos(nx)

n2

]π

−π

−
∫ π

−π

2 cos(nx)dx

)

= (−1)n 4
n2

for n 6= 0. As above, a0 = 0.

The bn are given by

bn =
1
π

∫ π

−π

(
x2 − 2x− π2

)
sin(nx)dx =

1
π

∫ π

−π

2x sin(nx)dx

= (−1)n 4
n

So the Fourier series for f is f(x) =
∑∞

n=1(−1)n 4
n2 cos(nx)+(−1)n 4

n sin(nx).

(b) f(x) = x3 − 3x2 − 3π2x for −π < x 6 π, and f 2π-periodic.

The derivative f ′(x) = 3x2−6x−3π2 is 3 times the function whose Fourier
series we computed in (a). The Fourier series in (a) had constant term 0,
so we can integrate it termwise, and just worry about the constant term.

The constant term of the Fourier series is 1
2π

∫ π

−π
3x2dx = π2 (since the odd

terms x3 and −π2x cancel when we integrate from −π to π). Therefore,
the Fourier series is f(x) = π2 +

∑∞
n = −∞
n 6= 0

(−1)n
(

2
−n2 + 2

−in3

)
einx,

or f(x) = π2 +
∑∞

n=1(−1)n+1 4
n2 cos(nx) + (−1)n 4

n3 sin(nx).

(c) f(x) = ex for −1 6 x < 1 and f 2-periodic. [Note, the period of this
f isn’t π.]
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The coefficients cn are given by cn = 1
2

∫ 1

−1
e(1−πin)xdx = 1

2

[
e(1−πin)x

1−πin

]1
−1

=

(−1)n

2

(
e−e−1

1−πin

)
. Therefore, the Fourier series is f(x) =

∑∞
n=−∞

(−1)n

2

(
e−e−1

1−πin

)
eπinx.

6 Find the Fourier sine series for the following functions on the interval
[0, π].

(a) f(x) = cos x.

The coefficients of the sine series are given by

bn =
2
π

∫ π

0

cos x sin(nx)dx =
1
π

∫ π

0

sin ((n + 1)x) + sin ((n− 1)x) dx

=
{ 1

(n+1)π + 1
(n−1)π if n is even

0 if n is odd

So the Fourier sine series is cos x = 1
π

∑∞
m=1

4m
4m2−1 sin(2mx) (using the

substitution n=2m).

(b) f(x) = 3.

The coefficients of the sine series are given by

bn =
2
π

∫ π

0

3 sin(nx)dx =
{

6
πn if n is odd
0 if n is even

Therefore, the Fourier sine series is 3 =
∑∞

m=0
6

π(2m+1) sin((2m + 1)x).

7 An elastic string of length π, satisfying the wave equation ∂2u
∂t2 = c2 ∂2u

∂x2 is
fixed at one end (so u(0, t) = 0) while the other end is made to oscillate
so that u(π, t) = sin t. Assuming that u(x, t) does separate as a sum of
products Θ(x)Φ(t) that also satisfy the wave equation, find the motion of
the rest of the string. [2 marks]

We use separation of variables on the wave equation: if u is of the form
u(x, t) = Θ(x)Φ(t), then Θ and Φ satisfy Θ(x)Φ̈(t) = c2Θ′′(x)Φ(t), and
therefore, Φ̈(t)

Φ(t) = c2 Θ′′(x)
Θ(x) . But the right-hand side of this equation de-

pends only on x, while the left-hand side depends only on t, so they must
both be constant. Also, to get the boundary condition u(π, t) = sin t, we
must have Φ(t) = λ sin(t) for a constant λ = Θ(π). This means that Φ̈(t)

Φ(t) =

−1, and therefore, Θ′′(x)
Θ(x) = −1

c2 , And so, Θ(x) = a sin
(

x
c

)
+b cos

(
x
c

)
. How-

ever, from the condition u(0, t) = 0 for all t, we must have that b = 0, so

the solution must be u(x, t) =
sin t sin( x

c )
sin(π

c ) .
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8 The temperature u(x, t) in a thin metal rod of length π, at position x and
time t, satisfies the heat equation ∂u

∂t = k ∂2u
∂x2 , where k is a positive real

constant. The rod is heated to a uniform 50◦C, then one end is fixed at
0◦c, and the other end is fixed at 100◦C.

(a) Use separation of variables to find solutions satisfying the boundary
conditions u(0, t) = 0, u(π, t) = 100, for all t. [Hint: consider v(x, t) =
u(x, t)− 100

π x.]

v(x, t) = u(x, t)− 100
π x satisfies ∂v

∂t = ∂u
∂t = k ∂2u

∂x2 = k ∂2v
∂x2 , and has bound-

ary conditions v(0, t) = v(π, t) = 0. If we suppose v(x, t) = Θ(x)Φ(t), then
Θ and Φ satisfy: Θ(x)Φ̇(t) = kΘ′′(x)Φ(t), and therefore, Φ̇(t)

Φ(t) = k Θ′′(x)
Θ(x) .

The left-hand side depends only on t, while the right-hand side depends
only on x, so they must both equal some constant λ. The boundary con-
ditions Θ(0) = Θ(π) = 0 mean that we must have Θ(x) = a sin(nx) for
some integer n, and some a. This means that λ = n2, so Φ(t) = be−kn2t

for some b. Therefore, the solution to the equation with the boundary
conditions is u(x, t) = 100

π x +
∑∞

n=1 bne−kn2t sin(nx) for some values of
bn.

(b) Use Fourier series to find u(x, t) for t > 0. (From the intial condition
u(x, 0) = 50 for all x.)

We know that u(x, 0) = 50 for all x, so v(x, 0) = 50 − 100
π x. We can

therefore use Fourier series to find the coefficients bn above, by substituting
t = 0. We get

bn =
2
π

∫ π

0

(
50− 100

π
x

)
sin(nx)dx

=
100
π

([
−
(
1− 2

π x
)
cos(nx)

n

]π

0

−
∫ π

0

2
π

cos(nx)dx

)
=
{

0 if n is odd
200
πn if n is even

Therefore, we have that u(x, t) = 100
π x +

∑∞
m=1

100
πme−4km2t sin(2mx).
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