MATH 3090, Advanced Calculus I
Fall 2006
Toby Kenney

Mock Midterm Examination
Model Solutions

1 Show that if the series Y .-, an converges, where a, > 0 for all n, then
so does a2

Since ZZO:O a, converges, we must have a, — 0 as n — oo. Therefore we
can choose an N such that (Vn > N)(a, < 1). Now for n > N, a2 < a,,

oo 2 . S
SO Y~y Gz converges by comparison to ) " ap.

2 Which of the following series of functions converge uniformly on the in-
terval (0,1)% Justify your answers.

S 1
50 _ z ifr <=
(0) 32 ) where £ ={ 37 05
For every n, and every z, f,(z % Z _o Jn(x) converges uniformly

) <
by the Weierstrass M-test with M,

(b) >, (fir 2 [Hint: substitute y = n*z, and expand the denominator]

y+1

If we let y = n2z, then the fraction is —. However,

n2_
(1)’
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R 2 Y n (ﬁ) >
(1+%) =1+n +(2 ) L) 4214y

y+1
so —22— < n—lz Therefore, the series converges uniformly by the Weier-

(1+5%)"

strass M-test with M, = n—lf‘\

8 Find the radius of convergence of each of the following power series. Do
they converge at the points where |x| is equal to the radius of convergence?

(a) Yol whr

. . . n+1q2n+1
The ratio of consecutive terms is x:v”3+"+3 = §. Therefore, for |z| <9,

the series converges by the ratio test, while for |z| > 9, it diverges by the



ratio test. Thus, the radius of convergence is 9. When |z| = 9, the series
diverges, because all the terms have modulus %, so they do not converge
to 0.

n,.n

(b) S0°, 2 (You may assume that (1+ 1)" — e asn — c0.)

n!

(n+1)"+1z"+1n! o (n+1)”+1z
(n+1)Inngn - (n41)n"

(1 + %)nx As n — oo, this converges to ex, so the series converges if
ex < 1, and diverges if ex > 1. The radius of convergence is therefore é

The ratio of consecutive terms in this series is

I should have been more careful stating this question — it wasn’t reasonable
to expect you to determine whether the series converges for x = i%. We
will see shortly when we cover Stirling’s formula that the series diverges for
T = é and converges when z = f% by the alternating series test. (In fact
we can show the latter by observing that (1 + %)n < e for all n — when we
expand the bracket the terms we get are all less than the corresponding

terms in the Taylor series for e.)
State and prove the Bolzano- Weierstrass theorem.

Bolzano-Weierstrass Theorem: Any bounded sequence of real num-
bers has a convergent subsequence.

Proof: Let a, be a sequence of real numbers. We will show that it has
a monotone subsequence, then if a,, is bounded, this subsequence will be
convergent by the monotone convergence axiom.

To show that a,, has a monotone subsequence, we will call a natural num-
ber n far-seeing if (Vm > n)(a, > an,). Now either there are infinitely
many far-seeing n: in which case, the subsequence a,,, where the n; are
the far-seeing n, is a decreasing subsequence; or there are only finitely
many far-seeing n, in which case, there is a largest far-seeing N, so for
any n > N, there is an m > n with a,, < a,,. We can therefore choose
n1 = N +1, and inductively define n;11 to be the first number larger than
n; to satisty an, < an,,,. The a,, then form an increasing subsequence of
the a,. Therefore, in either case, we have a monotone subsequence.

Which of the following series converge? For series which converge, is
the convergence absolute? Justify your answers. (You may assume con-
vergence of geometric series and > oo, - for p > 1, and divergence of

oA I n=1 np
Y=t r Jorp<1.)
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_n’+2 1
Asn — oo, S TAnTE 3, so the terms do not converge to zero. There-

fore, the sum cannot converge.

Z —arctann
(b) Yo

solution 1(integral test): %Ctanz is a decreasing function of x for

xz > 0, and it converges to 0 as ¢ — oo. Therefore, we can apply
the integral test, to say that > - L“an"

n
foo 5 —arctanz
1 x

converges if and only if

dx Converges We perform the substitution x = tan#, to

get: farctanl m % converges
to 1 as @ — 7. Therefore, the integral is bounded, so 1t converges There-

oo g —arctann
fore,  ~ | #———— converges.

solution 2: tan (f — 0) =

arctan( X
is Z'n 1 ( )

so the series converges by comparison to )

so T —arctann = arctan (1), so the sum
arctan(%)
n

tanG’
, and for n > 1, arctan( ) < % Thus,

o0
n=1 n2"
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Show that if f, — f uniformly on the interval [a,b], and all the f, are
continuous on [a,b], then f is continuous on [a,b]. If the f, are all differ-
entiable at some x € [a,b], must [ be differentiable at ¢ Give a proof or
a counterexample.

We need to show that given € > 0, and z € [a, b], there is a § > 0, such that

My € [a,b])(Jly — x| < d = |f(y) — f(z)] <e€). Since the f, — f uniformly
n [a,b], we can find an N such that (Vo € [a,b])(|fn(2) — f(z)] < )

(indeed we can find N such that this holds for every n > N). Now, fy is

continuous, so we can choose a § > 0, such that

)

(vy € la, b)) (ly — 2| <= |fn(y) - fn(@)] < 5

Now if |z — y| < § then
[f(@) = f(W)l = 1f (@) = fn(2) + fn(@) = In () + In(y) — Fly)l <

€ € €
|f(z) = fn (@) + [fn(@) = In@)] + [ (y) — f)] < 3T3T37¢
which is what we needed for f to be continuous.

f does not have to be differentiable at « € [a, b] even if all the f,, are differ-

. 1
—r ifox<—2

entiable there. For example, ifa = —1,b = 1 and f,,(z) = % if — %

x if x > %
then f,, converges uniformly to f(z) = |z|, but every f, is differentiable
at 0, while f is not differentiable at 0.
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