
MATH 2051, Problems in Geometry

Fall 2007

Toby Kenney
Mock Final Examination

Time allowed: 3 hours
Calculators not permitted.

Note that diagrams are not drawn to scale. Scale drawing does not consti-
tute a proof. Justify all your answers. This mock exam contains more questions
than the final exam will, particularly on hyperbolic geometry, in order to give
a better idea of the range of questions that might be asked.

Answer all questions

1 (a) Let A and B be two points. Let 0 < λ < 1 be a real number. Let P

be a point such that AP
BP

= λ. Let θ = ∠ABP . Use the cosine rule on
triangle ABP to find a quadratic equation satisfied by BP .

We know that AP 2 = λ2BP 2. By the cosine rule on 4ABP , we get
λ2BP 2 = BP 2+AB2−2AB.BP cos θ, or (λ2−1)BP 2+(2AB cos θ)BP −
AB2 = 0.

(b) Since a quadratic equation has at most two solutions, there is at

most one other point P ′ on the line BP such that AP ′

BP ′
= λ. Show that

BP+BP ′

2 =
(

AB
1−λ2

)

cos θ and BP−BP ′

2 =
(

AB
1−λ2

)

√

cos2 θ − (1 − λ2).

We can use the quadratic formula to get BP =
−2AB cos θ±

√
4AB2 cos2 θ+4AB2(λ2−1)

2(λ2−1) .

We can add the two solutions to get BP + BP ′ = 2
(

−AB
λ2−1

)

cos θ.

We can also take the difference between the two solutions to get BP −
BP ′ = 2

√
4AB2 cos2 θ+4AB2(λ2−1)

2(λ2−1) = 2
(

AB
(1−λ2)

)

√

cos2 θ − (1 − λ2)

(c) Let O be the point on AB extended past A, such that OB = AB
1−λ2 .

Show that P and P ′ both lie on a circle centre O, radius ABλ
1−λ2 . [Hint: Let

M be the midpoint of P and P ′; show that OM is perpendicular to BP .]

O A B

P

P ′

M

θ

If M is the midpoint of PP ′, then we have that BM = BP+BP ′

2 =
(

AB
(1−λ2)

)

cos θ = OB cos θ. This means that 4OMB is right-angled at

M (since if D is the foot of the perpendicular from O to BP , then
BD = OB cos θ = BM). Now we can use Pythagoras’ theorem to get
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OP 2 = OM2 +MB2 = OB2 sin2 θ +
(

BP−BP ′

2

)2

. Using the result in (b),

this gives OP 2 = OB2
(

sin2 θ + cos2 θ − (1 − λ2)
)

= OB2λ2. Therefore,

OP = OBλ = ABλ
1−λ2

2 Given a line segment of length 1, describe how to construct a line segment

of length
√

2 +
√

3 using just a straight-edge and a pair of compasses. [You
do not need to prove that your construction works.]

We start by constructing a line segment of length
√

3. The easiest way to
do this is just to construct an equilateral triangle ABC with base AB by
letting C be a point where the circle centre A passing through B and the
circle centre B passing through A intersect. Similarly, we construct the
other equilateral triangle BCD with base BC. Now AD =

√
3.

A B

C D

M B1
B2X

Y

P

Now we extend the line AB in both directions. Let X be the point on
this line on the opposite side of A to B, such that AX =

√
3 (we find

this point by drawing the circle centre A passing through D and seeing
where it meets AB). Now we find the points B1 and B2 on the line AB,
on the opposite side of B to A, such that BB1 = B1B2 = 1 (by drawing
the circle centre B passing through A, and the circle centre B1 through
B). Now if we draw the circles centre B2 passing through B and centre
B passing through B2, and let Y be a point where they intersect, then
we draw the line B1Y , which is parallel to AB. Finally, we construct the
midpoint of XB2 by drawing circles centre X passing through B2 and
centre B2 passing through X , and joining the points Z1 and Z2 where
they intersect. Let M be the point where W1W2 meets AB. Now we draw
the circle centre M , passing through X . Let P be the point where this

circle meets B1Y . B1P is a line segment of length
√

2 +
√

3.

3 (a) Show that the hyperbolic distance from the origin to the point x, for a
positive real number x is 2 tanh−1 x.

The hyperbolic distance from (0, 0) to (0, x) is given by
∫ x

0
2dy

1−y2 (since the
x-coordinate is constantly 0. Make the substitution y = tanh z. This gives
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dy
dz

= 1
cosh2 x

= 1−tanh2 x. Therefore, the integral is
∫ tanh−1 x

0
2(1−tanh2z)
1−tanh2z

dz =

2 tanh−1 x.

(b) Deduce that the hyperbolic distance from z to w is 2 tanh−1
∣

∣

∣

z−w
wz−1

∣

∣

∣
.

We apply the isometry x 7→ x−w
wx−1 , which sends w to 0 and z to z−w

wz−1 .

Next we apply a rotation about the origin to send z−w
wz−1 to

∣

∣

∣

z−w
wz−1

∣

∣

∣
. Since

the maps we applied are isometries, the hyperbolic distance from z to

w is the same as the hyperbolic distance from 0 to
∣

∣

∣

z−w
wz−1

∣

∣

∣
, which is

2 tanh−1
∣

∣

∣

z−w
wz−1

∣

∣

∣
.

4 Let ABC be a triangle with incentre I and inradius r. Let γ be a circle
inside the triangle tangent to the sides AC and BC, and externally tangent
to the incircle of 4ABC (i.e. the incircle of 4ABC and γ meet at a point
T , where they have a common tangent, and the rest of γ lies outside the

incircle). Let γ have radius r′ and centre J . Show that r′

r
=

1−sin C
2

1+sin C
2

,

where C is the angle ∠ACB.
A

B

C
D

D′

EF

I
J

T

Let the foot of the perpendicular from I to BC be D, and the foot of
the perpendicular from J to BC be D′. Triangles IDC and JD′C are
both right angled triangles with angle θ, so they are similar, and the ratio
between them is r

r′
. Also, T lies on the line through I and J , which also

passes through C. We note that CT
CJ

= CJ+r′

CJ
=

CJ+CJ sin C
2

CJ
= 1 + sin C

2 .

Similarly, CT
CI

= CI−r
CI

=
CI−CI sin C

2

CI
= 1 − sin C

2 . Therefore, r′

r
= CJ

CI
=

1−sin C
2

1+sin C
2

.

5 Find the area of the hyperbolic triangle with vertices at 0,
√√

3−1√
3+1

and
√√

3−1√
3+1

i. [Hint: tan π
6 = 1√

3
.]

The area of an hyperbolic triangle with angles α, β and γ radians is
π−α−β−γ, so we just need to find the angles of this triangle. The angle

at the origin is clearly π
2 radians. Let x =

√√
3−1√
3+1

. To find the angle at

x, we apply z 7→ z−x
xz−1 , to send x to the origin. This sends 0 to x and xi

to x(i−1)
ix2−1 = x(i−1)(−1−ix2)

1+x4 = x(1+x2−i(1−x2))
1+x4 .

The angle between the images of the points 0 and xi from the origin

is therefore tan−1
(

1−x2

1+x2

)

. Now 1 − x2 = (
√

3+1)−(
√

3−1)√
3+1

= 2√
3+1

, and

3



1 +x2 = (
√

3+1)+(
√

3−1)√
3+1

= 2
√

3√
3+1

, so 1−x2

1+x2 = 2
2
√

3
= 1√

3
= tan π

6 . Therefore

the angle at x in the original triangle is π
6 . The triangle is symmetric

about the line a + ai (the line at 45◦ to the real axis), so the angle at xi

is also π
6 . Therefore, the area of the triangle is π − π

2 − π
6 − π

6 = π
6 .

6 Let Γ be a circle. Let A and B be points on Γ. Let C be a point on Γ, and
D a point outside Γ such that ABCD is a parallelogram. Extend the line
DA to meet Γ again at X. Show that BX = AC and AB = CX.

A
B

C
D

X

First we note that ∠ABC = ∠BAX by alternate angles. However ∠BAX =
∠BCX by angles in the same segment. Also, ∠BAC = ∠BXC by angles
in the same segment. Therefore, ∠ACB = ∠XBC by angles in a triangle,
so triangles ACB and XBC are similar, so since they share the side BC,
they are congruent. Therefore, AC = BX and AB = CX .

7 There is a semiregular polyhedron with 2 square faces, one triangular face,
and one pentagonal face meeting at each vertex. How many:

(i) triangular faces

(ii) square faces

(iii) pentagonal faces

(iv) vertices

(v) edges

does it have?

Let F3 be the number of triangular faces, F4 the number of square faces
and F5 the number of pentagonal faces. Since there is exactly one trian-
gular face at each vertex, and 3 vertices on each triangular face, V = 3F3.
Similarly, V = 4F4

2 = 2F4 and V = 5F5. We therefore have F4 = 5
2F5 and

F3 = 5
3F5. Finally, since each triangular face has 3 edges, each square face

has 4 edges and each pentagonal face has 5 edges, but each edge is shared
by two faces, we get 2E = 3F3 + 4F4 + 5F5 = 5F5 + 10F5 + 5F5 = 20F5.
We also have F = F3 + F4 + F5 = 5

3F5 + 5
2F5 + F5 = 31

6 F5 and V = 5F5,
so by Euler’s formula, 31

6 F5 + 5F5 − 10F5 = 2, so (31 + 30 − 60)F5 = 12,
i.e.

(iii) F5 = 12.
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This gives:

(i) F3 = 20.

(ii) F4 = 30.

(iv) V = 60.

(v) E = 120.

8 Show that the area of an hyperbolic triangle with angles α, β, and γ is
π −α− β − γ. [You may use the fact that the area of a doubly asymptotic
triangle with angle θ is π − θ.]

We start by considering an asymptotic triangle with angles α, β and 0.
We show that this triangle has area π − α − β:

Let ABC be a singly asymptotic triangle, with A a point on the boundary
of the disc. Extend BC past C to meet the boundary of the disc at D.

O

A

B C

D

Now the area of the singly asymptotic triangle ABC is the area of the
doubly asymptotic triangle ABD minus the area of the doubly asymptotic
triangle ACD. The triangle ABD has angle α, while the triangle ACD

has angle π − β. Therefore the area of triangle ABD is π − α, and the
area of triangle ACD is π − (π − β) = β. The area of triangle ABC is
therefore π − α − β.

Now we can show that a triangle ABC with angles α, β and γ has area
π − α − β − γ:

Extend BC past C to meet the boundary of the disc at D.

O

A

B C

D

The area of ABC is the area of ABD minus the area of ACD. Let
∠CAD = δ. Then the area of 4ABD is π − α − β − δ, and the area of
4ACD is π − (π − γ)− δ = γ − δ, so the area of 4ABC is π −α− β − γ.

9 (a) Show that inversion in a circle sends lines not passing through the
centre of the circle to circles passing through the centre of the circle.

Let O be the centre of the circle, and let l be a straight line not through O.
Drop the perpendicular from O to l, and let the foot of this perpendicular
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be P . Let its image under the inversion be P ′. Let Q be another point on
l, and let Q′ be its image.

O
P

P ′

Q

Q′

l

We know that OP.OP ′ = OQ.OQ′ = r2, so P , P ′, Q, and Q′ are concyclic.
Since ∠OPQ = 90◦, we get that ∠OQ′P = 90◦. Therefore, Q′ lies on the
circle with diameter OP ′. This circle is therefore the image of l.

(b) What are hyperbolic straight lines in the disc model? Prove your an-
swer. [You may use the hyperbolic isometries taught in class without proof.
You may also assume that the real axis is an hyperbolic straight line.]

We can find all hyperbolic straight lines by applying isometries to the
real axis. By applying rotations about the origin, we get that hyperbolic
straight lines through the origin are Euclidean straight lines.

The other hyperbolic isometries that we apply are the isometries of the
form z 7→ z−a

az−1 . These can be expressed as the composite of the transfor-
mations:

z 7→ z − 1

a

z 7→ 1 − aa

az
z 7→ z

z 7→ z +
1

a

The first of these is a translation, so it sends a line through the origin to
another line. The second is an inversion in a circle centred at the origin,
so it sends this line to a circle (passing through the origin). The third is
a reflection in the real axis, so it sends this circle to another circle. The
fourth is a translation, so it sends the circle to another circle.

The image of a line through the origin under z 7→ z−a
az−1 is a circle, and it

contains the images of 0 and ∞, which are the points a and 1
a
. These two

points are on a line through the origin, since a
1

a

is real. The power of the

origin with respect to this circle is therefore |a|
∣

∣

1
a

∣

∣ = 1. This means that
the tangents from the origin to this circle have length 1, and therefore,
that this circle meets the unit circle perpendicularly.

Therefore, hyperbolic lines are straight lines through the origin and circles
perpendicular to the unit circle.
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10 How many hyperfaces, faces, edges and vertices does a 4-dimensional hy-
percube have? Justify your answer.

A 4-dimensional hypercube has a cube as its base, then a cube at the top,
and between part of the base and the corresponding part of the top, the
figure formed is a figure one dimension higher, so for example, between a
square face on the base and a square face on the top, there is a cubical
hyperface.

There are therefore 8 cubical hyperfaces in total – one on the base and
one on the top, and one for each of the 6 faces of the bottom and the top.

Similarly, there are 24 square faces – 6 on the base, 6 on the top, and one
for each edge of the base.

There are 32 edges – 12 on the base, 12 on the top, and one for each of
the 8 vertices on the base.

Finally, there are 16 vertices – 8 on the base and 8 on the top.

11 Let ABC be the triply asymptotic hyperbolic triangle with vertices at 1,
0.6+0.8i and w where w is the point on the boundary of the unit disc such
that 0.5i lies on the hyperbolic line between 1 and w . Find an hyperbolic
isometry sending ABC to the hyperbolic triangle with vertices at the 1,
−1 and i.

First we find an isometry sending the line from 1 to w to the real axis.
Since the point 0.5i lies on this line, we start by applying the isometry
z 7→ z−0.5i

−0.5iz−1 to send this point to the origin. This isometry sends 1 to
1−0.5i
−1−0.5i

= (1−0.5i)(−1+0.5i)
1.25 = 3+4i

5 and 0.6+0.8i to 6+8i−5i
4−3i−10 = 6+3i

−6−3i
= −1.

We need to rotate about the origin to send 1 to itself. This is achieved
by multiplying by 3−4i

5 , so that the isometry is z 7→ 3+4i
5

z−0.5i
−0.5iz−1 . This

sends 3+4i
5 to −3+4i

5 . We now need to find an isometry that fixes the

real axis and sends −3+4i
5 to i. We note that the hyperbolic line from

−3+4i
5 perpendicular to the real axis is the Euclidean circle with centre

− 5
3 and radius 4

3 . This meets the real axis at − 1
3 . We therefore apply the

isometry z 7→ z+ 1

3

− 1

3
z−1

= 3z+1
−z−3 . The composite of all these isometries is

z 7→ 3( 3−4i
5

z−0.5i
−0.5iz−1 )+1

−( 3−4i
5

z−0.5i
−0.5iz−1 )−3

= 3(3−4i)(z−0.5i)+(−0.5iz−1)
−(3−4i)(z−0.5i)−3(−0.5iz−1) = (9−12.5i)z−(7+4.5i)

(−3+5.5i)z+5+1.5i
.

12 Find the endpoints of the hyperbolic line from 0.5−0.5i to 1−5i
13 in the disc

model. (i.e. find the points where this hyperbolic line meets the boundary
of the disc.)

First we apply the isometry z 7→ z−0.5+0.5i
(0.5+0.5i)z−1 . This sends 0.5−0.5i to the

origin, and 1−5i
13 to 2−10i−13+13i

−4−6i−26 = −11+3i
−30−6i

= 1
6

(−11+3i)(−5+i)
52+12 = 1

6
52−26i

26 =
2−i
6 .

It therefore sends the hyperbolic line through 0.5 − 0.5i and 1−5i
13 to the

hyperbolic line from 0 to 2−i
6 , which meets the boundary of the unit disc
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at 2−i√
5

and −2+i√
5

. To find the endpoints of the original line, we need to

apply the isometry z 7→ z−0.5+0.5i
(0.5+0.5i)z−1 to these points. The first one goes

to:

4 − 2i −
√

5 +
√

5i

3 + i − 2
√

5
=

(4 −
√

5 + (
√

5 − 2)i)(3 − 2
√

5 − i)

30 − 12
√

5
=

20 − 10
√

5 + (8
√

5 − 20)i

30 − 12
√

5
=

10 − 5
√

5 + (4
√

5 − 10)i

15 − 6
√

5

[We can simplify this further to get −
√

5−2i
3 .]

The second one goes to:

−4 + 2i − sqrt5 +
√

5i

−3 − i − 2
√

5
=

(−4 −
√

5 + (2 +
√

5)i)(−3 − 2
√

5 + i)

30 + 12
√

5
=

20 + 10
√

5 + (−20 − 8
√

5)i

30 + 12
√

5
=

10 + 5
√

5 − (10 + 4
√

5)i

3(5 + 2
√

5)
=

√
5 − 2i

3

13 Describe the construction to trisect an acute angle using a straight-edge
with a fixed distance marked on it and a pair of compasses, and prove that
it does indeed produce an angle one third the size of the original.

Let the angle be subtended at a point O by points A and B. Let the
length marked on the straight-edge be l. Use the compasses to draw a
circle of radius l about O, and let A′ and B′ be the points where this
circle meets OA and OB respectively (on the same side of O as A and
B). Extend OB past O. Move the straight-edge so that it passes through
A′, and so that the distance between the point C where it meets the line
OB extended past O, and the point D where it meets the circle centre
O, radius l be l. Now we know that 4CDO is isosceles, so ∠OCD =
∠DOC. Also, 4DOB′ is isosceles, so ∠ODB′ = ∠OB′D. By angles
in a triangle, ∠ODB′ = ∠DOC + ∠DCO = 2∠DCO and ∠B′OA′ =
∠OB′C + ∠OCB′ = 3∠OCB′. Therefore ∠OCB′ is one third the size of
the original angle AOB.
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