
Ramsey Theory

We begin with a simple question: How many people do we need to have at a
party to ensure that we can find either 3 of them who all know each other, or 3
of them who are all strangers to each other? [We assume that knowing someone
is symmetric – i.e. if A knows B then B knows A.]

We abstract the problem to one in graph theory in the following way: con-
sider the people at the party as vertices of a graph, and draw an edge between
any two of the people. We can now assign a colour to each edge – red if the
two people know each other, and blue if they do not. A set of 3 people who all
know each other then corresponds to a triangle all of whose edges are red, and a
set of 3 people who are mutual strangers corresponds to a triangle all of whose
edges are blue. Therefore, we are colouring each edge of a complete graph on n
vertices either red or blue, and looking for a triangle all of whose edges are the
same colour, and we are looking for the smallest value of n that we can choose
to ensure that this happens, or asking whether there is necessarily any value of
n that ensures that this happens.

To express this and similar questions more easily, we make the following
definitions:

Definition 1. A 2-colouring of the edges of a graph G is a function assigning to
each edge of G one of two colours. More generally, an n-colouring is a function
assigning to each edge of G, one of a fixed set of n colours.

Definition 2. Given a colouring of the edges of a graph G, a subgraph G′ is
monochromatic if there is some colour such that every edge in G′ is that colour.

solution:
The solution to this problem is that n = 6 is the smallest value of n such

that however we 2-colour the edges of a Kn, we always get a monochromatic
triangle. To show this, we need to show that however we 2-colour the edges of
a K6, we can always find a monochromatic triangle, and that there is a way of
2-colouring the edges of a K5 so that we cannot find a monochromatic triangle.

For the first part, pick a vertex v in a K6, and consider the edges incident
with v. There are 5 of them, and they are divided into two sets – red edges
and blue edges. Therefore, by the generalised pigeon-hole principle, there must
either be 3 red edges or 3 blue edges. W.L.O.G., suppose there are 3 red edges,
to vertices w1, w2, w3. If any of the three edges between two of w1, w2 and w3 is
red, then it completes a red triangle. On the other hand, if none of those three
edges is red, then they are all blue, and so w1, w2 and w3 form a blue triangle.
Therefore, in either case, there is either a red triangle or a blue triangle.

For the second part, we simply exhibit a 2-colouring of K5 with no monochro-
matic triangles:
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Having solved the problem, we look for ways to make it more general. The

choice of 3 people all of whom know each other, or all of whom are mutual
strangers was arbitrary. We could instead have asked how large n should be in
order that whenever we 2-colour the edges of a Kn, we always get a monochro-
matic K4, or in general, we could look for a monochromatic Km for any choice
of m.

Another way to generalise is to invest in a larger set of coloured pens – what
if we 3-colour the edges of a Kn? What if we k-colour them for an arbitrary k.

Finally, we can generalise by noticing that it is not necessary to look for the
same size of monochromatic set in each colour. We could for example ask how
large n has to be to ensure either a red K4 or a blue triangle. It turns out that
we will need to study this generalisation in order to get results about the first
generalisation.

First, we need some notation.

Definition 3. We define R(k, m) to be the smallest n such that whenever we
2-colour a Kn red and blue, we always get either a red Kk or a blue Km.

In fact this definition is not yet satisfactory, since we do not yet know that
there is any value of n that we can choose so that we ensure a red Kk or a blue
Km. The first thing we should do is to prove that we can always find an n with
this property.

Theorem 1 (Ramsey’s Theorem). For any positive integers k, m, there is an n
such that however we 2-colour (red and blue) the edges of a Kn, we can always
find either a red Kk or a blue Km. (So R(k,m) is defined for every k,m.
Furthermore, we have that R(k, m) 6 2k+m.

Proof. We prove this by induction on k and m. The base case is easy – if
k = m = 1 the result is trivially true, and indeed we have shown the result for
k = m = 3. Now suppose that R(k,m − 1) and R(k − 1,m) are both defined.
Let n = R(k, m− 1) + R(k − 1,m). Then let v be a vertex of Kn. v has n− 1
neighbours. This means that however we have 2-coloured the Kn, v has either
R(k − 1,m) red neighbours or R(k,m − 1) blue neighbours. In the first case,
we now look at the subgraph on the set of red neighbours of v. If this has a red
Kk−1, then this Kk−1, with v added, forms a red Kk in the whole graph. On the
other hand, if it has a blue Km, then this is a Km in the whole graph. Therefore,
the whole graph has either a red Kk or a blue Km. A similar argument applies
if v has R(k,m− 1) blue neighbours.

This argument has shown that R(k,m) 6 R(k − 1,m) + R(k,m− 1). From
this it is an easy induction to show that R(k,m) 6 2k+m.
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Remark 1. Clearly, we can improve the upper bound given in this theorem by
looking more closely at the small values of R(k, m), but the upper bound will still
be an exponential, and indeed the best known upper bound is an exponential.
On the other hand, we will shortly see some lower bounds for R(k, m), and see
that there is a very significant gap between the upper bounds and the lower
bounds.

Theorem 2. For any sequence m1,m2, . . . ,mk of positive integers, there is
some n such that whenever we k-colour the edges of a Kn with colours {c1, c2, . . . , ck},
we get a Kmi

all of whose edges are of colour ci for some i ∈ {1, . . . , k}.

Proof. We will prove this by induction on k. We proved the k = 2 case above.
Now suppose we know the result for k− 1, and for 2. Imagine becoming colour-
blind between colours c1 and c2. We now think that the graph is k−1-coloured,
and we can choose n large enough that whenever we k − 1-colour the Kn, we
get either a Kmi

all of whose edges are of colour ci for some i ∈ {3, . . . , k}, or
a KR(m1,m2) all of whose edges are of the colour which is either c1 or c2. In the
first case, we are done. In the second case, we have a KR(m1,m2), which in the
original colouring was 2-coloured with c1 and c2. By definition of R(m1,m2),
this means that we can find either a Km1 of colour c1 or a Km2 of colour c2.

Lower Bounds for Ramsey Numbers

So far, we have produced upper bounds on how large these R(m,n) are (and
we can use the proof of the previous theorem to produce upper bounds for the
larger numbers of colours. However, we do not yet know whether these upper
bounds are good ones – i.e. is the actual value of R(k, m) close to the upper
bound we have? Might we be able to choose a much smaller value of n and still
be guarenteed either a red Kk or a blue Km?

In a sense, finding lower bounds should be easier – to show that R(k,m) > N ,
we only need to find one 2-colouring of KN that does not have either a red Kk

or a blue Km. For small values of k and m, this is indeed the best way to
find Ramsey numbers. However, for larger values of k,m it isn’t so efficient,
because the colourings we can describe are well organised – i.e. they have a
lot of structure, and this often means that there will be large monochromatic
subgraphs.

In fact, the best known approach to this problem is by taking a random
colouring if KN , and showing that the probability of getting either a red Kk or
a blue Km is less than 1. If the probability is less than one, then there must be
at least one colouring in which there is no red Kk or blue Km.

Of course, the probability of getting a red Kk or a blue Km is very difficult to
calculate. However, a quantity which is much easier to calculate is the expected
number of red Kk and blue Kms. This gives an upper bound for the probability,
since the expected number of them is at least the probability that there is at
least one. We exemplify this technique in the case where k = m, but similar
methods could be applied to get lower bounds on more general Ramsey numbers.
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Theorem 3. R(m,m) > 2
m−1

2 .

Proof. 2-colour the edges of a Kn red with probability 1
2 , and blue with proba-

bility 1
2 (colour each edge either red or blue). Given m vertices of the graph, the

probability that the Km they form has all its edges red is
(

1
2

)(m
2 ). Therefore,

the expected number of red Km is (n
m)

2(
m
2 ) . Similarly, the expected number of

blue Km is (n
m)

2(
m
2 ) , so the expected number of monochromatic Km is

2(n
m)

2(
m
2 ) . We

therefore have that there is some colouring with no monochromatic Km as long

as
2(n

m)
2(

m
2 ) 6 1. (it is easy to show that if equality holds, then there must be a

colouring with no monochromatic Km, since it is easy to produce colourings
with more than one.) This gives

2
(

n

m

)
6 2(m

2 )

If we have
n 6 2

m−1
2

then we can deduce

nm 6 2(m
2 ) m!

2

2
nm

m!
6 2(m

2 )

2
(

n

m

)
6 2(m

2 )

Remark 2. We have shown that Ramsey numbers grow exponentially, but the
exact rate is not known. The number to be raised to the power m is some-
where between

√
2 and 4. The lower bounds that have so far been obtained by

constructing explicit colourings of a Kn are significantly smaller.

Infinite Ramsey Theory

Having shown that for arbitrarily large finite numbers k and m, we can always
find an n such that whenever we 2-colour a Kn, we get either a red Kk or a
blue Km, we are naturally led to ask whether if we 2-colour an infinite complete
graph, we will always get an infinite monochromatic set. The answer is yes,
and the proof is almost exactly the same as the proof for the finite case, but
simpler in some ways, since we don’t have to keep track of the sizes of things so
carefully.

Theorem 4. If the complete graph on N is 2-coloured, then there is a monochro-
matic infinite subset (i.e. a subset X such that for any i, j ∈ X, the edges ij
are the same colour).
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Proof. We will form a sequence x0, x1, . . . of natural numbers such that the
colour of the edge xixj with i < j depends only on i. We will then call this
colour ci. Once we have done this, we know that the ci are all either red or blue,
so either infinitely many are red or infinitely many are blue. If infinitely many
are red, then {xi|ci = red} is an infinite red set. If infinitely many are blue,
then {xi|ci = red} is an infinite blue set, so once we have found the sequence
x0, x1, . . ., we will be done.

Let X0 = N, and let x0 = 0. Start by considering 0. It has either an infinite
number of red neighbours, or an infinite number of blue neighbours. If it has
an infinite number of red neighbours, let X1 be the set of its red neighbours,
otherwise, let X1 be the set of its blue neighbours. If we choose all subsequent
xi from the set X1, then every edge from x0 to xi will be the same colour.

We choose x1 to be the smallest element in X1. Consider the edges from x1 to
other elements of X1. Either infinitely many of them are red or infinitely many
are blue. If infinitely many are red, let X2 ⊂ X1 be the set of red neighbours
of x1 in X1. Otherwise, let X2 ⊂ X1 be the set of blue neighbours of x1 in
X1. Now we will choose all subsequent values for our sequence to be in X2. We
let x3 be the smallest element of X2, and continue in the same way to get the
required sequence x0, x1, . . ..

We can use this infinite version of Ramsey’s theorem to prove the finite
version without getting any upper bounds.

Corollary 1 (Ramsey’s Theorem). For any positive integers k, m, there is an
n such that however we 2-colour (red and blue) the edges of a Kn, we can always
find either a red Kk or a blue Km.

Proof. Suppose there are values of k, m for which there is no such n. Then for
every n, there is a colouring of the edges of a complete graph on {0, 1, . . . , n−1}
with no red Kk or blue Km. Furthermore, if we take a colouring of the edges
of the complete graph on {0, 1, . . . , N − 1} for some N > n, with no red Kk

or blue Km, we can restrict to a colouring of {0, 1, . . . , n − 1} with no red Kk

or blue Km. Therefore, given a colouring of {0, 1, . . . , n − 1} with no red Kk

or blue Km, we can ask how much we can extend it – i.e. for what N is our
colouring the restriction of a colouring of the edges of the complete graph on
{0, 1, . . . , N − 1} with no red Kk or blue Km. Since there are colourings of
arbitrarily large complete graphs with no red Kk or blue Km, and there are
only finitely many colourings of {0, 1, . . . , n − 1}, we can find some colouring
which can be extended to arbitrarily large N . Furthermore, there is an extension
of this colouring to n + 1 that can also be extended to arbitrarily large N , and
so on.

By picking these extensions, we get a sequence of colourings c1, c2, . . . such
that ci is a colouring of Ki, and if i < j then cj is an extension of ci. We
can combine these to get a colouring of the edges of the complete graph on N
by colouring the edge ij with i < j the colour it is given by cj+1 (since the
later colourings extend the earlier ones, this is the same as the colouring it is
given by every cl for l > j. No initial segment {0, 1, . . . , N − 1} contains a red
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Kk or a blue Km, since the initial segment is coloured by cN ; but if the whole
graph contains a red Kk or a blue Km, then since k and m are finite, it would
have to be contained in some initial segment {0, 1, . . . , N − 1}, so the whole
graph doesn’t contain a red Kk or a blue Km, and therefore does not contain
a monochromatic infinite subset. This contradicts the previous theorem, so our
original assertion that there were values k,m for which no such n exists must
have been impossible.

One advantage of this proof is that the same argument can be used to prove:

Corollary 2. For any m ∈ N there is an n such that whenever the complete
graph on {0, 1, . . . , n−1} is 2-coloured, there is a monochromatic subset X whose
size is at least as big as the smallest number in X, and is also at least m.
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