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1 Which of these series converge? In each case, determine whether the con-
vergence is absolute. Justify your answers.

(a)
∑∞

n=0(−1)n n2+3
n3−7n+4

(n2 + 3)((n + 1)3 − 7(n + 1) + 4) = n5 + 3n4 − n3 + 7n2 − 12n− 6.

((n + 1)2 + 3)(n3 − 7n + 4) = n5 + 2n4 − 3n3 − 10n2 − 20n + 16.

Now for n > 1, n4+2n3+17n2+8n−10 > 0, so (n2+3)((n+1)3−7(n+1)+
4) > ((n + 1)2 + 3)(n3 − 7n + 4). Therefore, n2+3

n3−7n+4 > (n+1)2+3
(n+1)3−7(n+1)+4 ,

so the terms in the series are decreasing in modulus. Also, for n > 4,
n2 < n2 + 3 < 2n2 and n3 > n3 − 7n + 4 > 1

2n3, so 1
n < n2+3

n3−7n+4 < 4
n ,

so the terms n2+3
n3−7n+4 tend to 0 as n →∞. Therefore, by the alternating

series test,
∑∞

n=0(−1)n n2+3
n3−7n+4 converges. On the other hand the series

does not converge absolutely by comparison with 1
n .

(b)
∑∞

n=1
(−1)n

arctan n

As n → ∞, arctann → π
2 , so (−1)n

arctan n does not tend to zero. Therefore,∑∞
n=1

(−1)n

arctan n diverges.

(c)
∑∞

n=1(−1)n
(
1− cos

(
1
n

))
A good approximation to cos θ is the following:

Claim: cos θ > 1 − θ2

2 . (note that these are the first two terms of the
Taylor series of cos θ.

Proof of Claim: As cos is even, we only need to show the result for
θ > 0. In this case, sinθ 6 θ since its derivative is 6 1. Therefore,
cos θ = cos(0) +

∫ θ

0
(− sinφ)dφ > 1 +

∫ θ

0
(−φ)dφ = 1− θ2

2 .

An easier approximation to prove is that cos θ > 1 − θ2, since cos2 θ =
1 − sin2 θ, (1 − cos θ)(1 + cosθ) 6 sin2 θ, so for 0 6 θ 6 π

2 , 1 − cos θ 6
sin2 θ 6 θ2. Therefore cos θ > 1− θ2. For θ > pi

2 , 1− θ2 < −1 6 cos θ.
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Using either approximation, 1−cos
(

1
n

)
6 1

n2 , so
∑∞

n=1(−1)n
(
1−cos

(
1
n

))
converges absolutely by comparison to

∑∞
n=1

1
n2 .

(d)
∑∞

n=0(−1)n 2+(−1)n

n

∑∞
n=0(−1)n 2+(−1)n

n =
∑∞

n=0
2(−1)n

n + (−1)2n
n =

∑∞
n=0

2(−1)n

n + 1
n , and the

first term converges by the alternating series test, while the second term
diverges, so the whole series diverges. This shows that the condition in the
alternating series test that the terms should be decreasing is necessary.

Alternatively, the sum of the nth and n+1th terms is (−1)n
(

2
n(n+1) + (−1)n

(
1
n + 1

n+1

))
,

which is positive, and at least 1
2n , so the series diverges by comparison to∑∞

n=0
1
2n .

(e)
∑∞

n=1 an where an =
{

2
m if n = m2

−1
n if n is not a perfect square

Consider the sum
∑(m+1)2

n=m2+1 an. Every term an for n 6= (m + 1)2 is
> −1

m2 , and < −1
(m+1)2 . There are 2m such terms, so their sum S sat-

isfies −2m
m2 < S < −2m

(m+1)2 . Therefore, 2
m+1 −

2m
m2 <

∑(m+1)2

n=m2+1 an <
2

m+1 −
2m

(m+1)2 . The lower bound is −2
m(m+1) , while the upper bound is

2
(m+1)2 . Both

∑∞
n=0

−2
m(m+1) and

∑∞
n=0

2
(m+1)2 converge, so the sequence

of partial sums
∑m2

n=1 an converges. Also, if m2 < N < (m + 1)2, then∣∣∣(∑N
n=1 an

)
−

(∑m2

n=1 an

)∣∣∣ < 2
m , and 2

m → 0 as n →∞, so
∑∞

n=1 an con-

verges.
∑∞

n=1 an does not converge absolutely by comparison to
∑∞

n=1
1
n .

2 We showed (Theorem 6.18) that if
∑∞

n=0 an converges conditionally then∑∞
n=0 a+

n and
∑∞

n=0 a−n both diverge. Show that if
∑∞

n=0 an and
∑∞

n=0 a−n
both diverge, but the sequence an → 0 as n → ∞ then there is a (condi-
tionally) convergent rearrangement of

∑∞
n=0 an.

This is identical to the proof of 6.20 – the only facts we needed about
an were that

∑∞
n=0 a+

n and
∑∞

n=0 a−n both diverge, and that an → 0 as
n →∞.

3 (a) Suppose
∑∞

n=0 an converges to x, and furthermore, suppose that the
partial sums Sk =

∑k
n=0 an are such that

∑∞
n=0

∣∣x−Sk

∣∣ converges. Prove
that

∑∞
n=0 an converges absolutely. [Hint: use the triangle inequality (|a+

b| 6 |a|+ |b|) and the comparison test.]
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ak = Sk − Sk−1 (where S−1 = 0). Therefore, ak = (x− Sk−1)− (x− Sk),
so by the triangle inequality, |ak| 6 |x − Sk−1| + |x − Sk| (|Sk − x| =
|x−Sk|). But as

∑∞
n=0

∣∣x−Sk

∣∣ and
∑∞

n=1

∣∣x−Sk−1

∣∣ are both convergent,
so is

∑∞
n=1

∣∣x − Sk

∣∣ +
∣∣x − Sk−1

∣∣, and therefore, by the comparison test,∑∞
n=0 |an| is convergent, i.e.

∑∞
n=0 an is absolutely convergent.

(b) If
∑∞

n=0

∣∣x− Sk

∣∣ diverges, (Where, as in (a),
∑∞

n=0 an = x and Sk =∑k
n=0 an must the convergence of

∑∞
n=0 an be conditional? Give a proof

or a counterexample.

an = 1
n
√

n
is a counterexample. It converges absolutely to some value x,

but x−Sk is at least
∫∞

k
x−

3
2 dx =

[
−2x−

1
2

]∞
k

= 1√
k
, by the integral test,

so the sum
∑∞

n=0

∣∣x− Sk

∣∣ diverges.
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