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Compulsory questions

1 (a) Find the radius of convergence of
∑∞

n=0
(−1)nx2n

4n+1 .

The ratio between consecutive terms is −x2

4 , so the radius of convergence
is 2 by the ratio test.

(b) Evaluate
∑∞

n=0
(−1)nx2n

4n+1 on the interval (−R,R), where R is the radius
of convergence [Hint: it’s a geometric series]. On what interval is the
function you get infinitely differentiable?

The sum is a geometric series with common ratio −x2

4 , so its sum is
1
4

(
1

1+ x2
4

)
= 1

x2+4 on (-2,2). The function f(x) = 1
n2+4 is infinitely

differentiable on the whole of R.

When we study complex numbers, we will see why the Taylor expansion of
1

n2+4 only has radius of convergence 2.

2 Let

f(x) =
{

e−
1

x2 if x 6= 0
0 if x = 0

Differentiate f(x). Show that xnf(x) → 0 as x → 0, for any n. Can f be
expressed as a Taylor series about 0?

f ′(x) = −2e
− 1

x2

x3 . To show that x−nf(x) → 0 as x → 0, we show that
given any n, for sufficiently large x, ex > xn.

To do this we observe first that ex > ex by seeing that they are equal
when x=1, and that the derivative of ex is more than e when x > 1 and
less than e when x < 1. Now this means that for any m, ex = em x

m =(
e

x
m

)m
>
(

ex
m

)m. Now if m = n + 1, then when x > mm

em , we have that
ex >

(
xem

mm

)
xn > xn.

Now, since x−(n+1)

x−n → 0 as x → ∞, we have that xne−x → 0 as x → ∞.
Therefore, xne−x2 → 0 as x → ∞, so x−nf(x) → 0 as x → 0, since
x−1 →∞ as x → 0.
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By the product rule, every derivative of f on R \ {0} is the product of a

polynomial in x−1 multiplied by f(x). Therefore,
dnf
dxn

x → 0 as x → 0, so
d(n+1)f
dxn+1

∣∣∣
0

= 0 for all n. Therefore, f does not have a Taylor expansion
about 0, since all the terms in it would be 0.

3 Suppose that
∑∞

n=0 anxn has radius of convergence R, and suppose x0 ∈
(−R,R). Show that f(x) =

∑∞
n=0 anxn has a Taylor series expansion

about x0 with radius of convergence at least R − |x0|. [Hint: Calcu-
late the coefficients as power series in x0 by differentiating the series re-

peatedly. Now observe that
∑∞

n=0 |an|
(∑n

m=0

(
n
m

)
|x0|n−m|x− x0|m

)
converges when |x−x0| < R−|x0|. Therefore, we can rearrange the terms

to get that
∑∞

m=0

(∑∞
n=m |an|

(
n
m

)
|x0|n−m|x− x0|m

)
converges. Com-

pare this to the Taylor series we got by differentiating at x0.]

We know that the mth derivative of f at x0 is the sum
∑∞

n=m
n!

(n−m)!anxn−m
0 .

Therefore, the Taylor series expansion of f about x0 is

∞∑
m=0

( ∞∑
n=m

(
n
m

)
anxn−m

0 (x− x0)m

)

We also know that
∑n

m=0

(
n
m

)
|x0|n−m|x − x0|m = (|x0| + |x − x0|)n,

so for |x0|+ |x− x0| < R, the series

∞∑
n=0

an

n∑
m=0

(
n
m

)
xn−m

0 (x− x0)m

is an absolutely convergent double series. Therefore, we can rearrange its
terms without affecting the result. In particular,

∞∑
m=0

∞∑
n=m

an

(
n
m

)
(x0)n−m(x− x0)m

is absolutely convergent. But this is the Taylor series above.

4 Find power series about 0 for the following integrals:

(a)
∫ x

t=0
cos(t3)dt

cos(t3) has power series
∑∞

n=0
(−1)nx6n

(2n)! . The integral of this is the series∑∞
n=0

(−1)nx6n+1

(6n+1)(2n)! . There is no constant term because the integral starts
at 0, so the value at x = 0 is 0.
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∫ x

t=0
et−1

t dt

The power series for et−1
t is

∑∞
n=0

tn

(n+1)! . Therefore, when we integrate,

we get
∑∞

n=1
tn+1

(n+1)(n+1)! . Again, there is no x0 term because we are inte-
grating from 0.
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