Math 1500X, Final Exam (December 2017)

No calculator or cheat sheets are allowed. You have 3 hours. Please write all your answers in the
booklet provided.

1. Determine the following limits. (
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ﬁ‘(‘a) State the delta-epsilon definition of a limit.

(b ) Let f(z) = { ’ llff ;<>(()) . Use the delta-epsilon definition of a limit to show that the limit

()} /hm f(z) does not exist.

@ 3. Find the derivative of f(z) = /= from the first principles (no credit given for using differentiation
rules).

O y=mia) ©)y= e )
5“ ga) Find the limits hrg ™% and hm ™% (b), Sketch the graph of y = 2=, z > u. Lapel any
ﬁnax/ min or asymptotes. 3)

4. Find the derivative of the following ﬁff‘t\mns using any method you like:
2

o )6 Show that the function f(z) = 2z + cos(z) has ezactly one root, and give bounds for where the
( f roof, is located. ( )

7. %stlmate In(1.1) using linear approximation about an appropriate point. (b“)’Estxmate the error
in part (a).

8- Find the solution to the initial value problem
( .fl z" -4z’ + 13z =0, z(0)=1, z'(0)=0.

9. Recall that the motion of an object attached to a spring satisfies mz” + cz’ + kz = 0, where z(t) is
the displacement from the equilibrium, m is its mass, c is the friction coefficient and k i is the spring
constant. For a certain spring, the displacement z(t) is as shown in the graph below.
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If the mass is known to be m = 1kg, estimate (a) the friction coefficient ¢, and (b ) the spring
constant k. You may express your answer in “calculator ready” format.




A A Norman window has the shape of a rectangle surmounted by a semicircle, as shown below.

: /N

If the total perimeter of the window is 10m, find the dimensions of the window so that the greatest
possible amount of light is admitted.

11. A person in a row boat at point P is 4km away from a straight shore line. The point A on the
shore is directly opposite the boat. The objective is to travel from point P to point B on the shore
a distance 9km from A in a minimum amount of time. If the person can row at 4 km per hour and
walk at 5 km per hour, where should the person land the boat between A and B?

B A
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12. [BONUS QUESTION]

(a) Suppose that f(0) = —1 and f”(z) > 0 for all z > 0. Show that f(z) has at most one positive
root.

(b) Sketch an example of a function f(z) with that satisfies the conditions of part (a) but has no
positive roots.

(c) Suppose that f(0) = —1 and f”(z) > 1 for all z > 0. Show that f(z) has exactly one positive
root.
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