Math 1500X, Final Exam (December 2017)

No calculator or cheat sheets are allowed. You have 3 hours. Please write all your answers in the booklet provided.

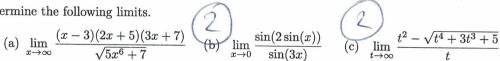
1. Determine the following limits.



(a) 
$$\lim_{x \to \infty} \frac{(x-3)(2x+5)(3x+7)}{\sqrt{5x^6+7}}$$



(b) 
$$\lim_{x \to 0} \frac{\sin(2\sin(x))}{\sin(3x)}$$



2, (a) State the delta-epsilon definition of a limit.

(b) Let  $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \leq 0. \end{cases}$ . Use the delta-epsilon definition of a limit to show that the limit  $\lim_{x \to \infty} f(x)$  does not exist



- 3. Find the derivative of  $f(x) = \sqrt{x}$  from the first principles (no credit given for using differentiation rules).
- - 4. Find the derivative of the following functions using any method you like:
- (a)  $y = \ln(\ln x)$  (b)  $y = (\ln(x))^{\sin(x)}$  (c) Sketch the graph of  $y = x^{-1}$ , x > 0. Label any max/min or asymptotes.

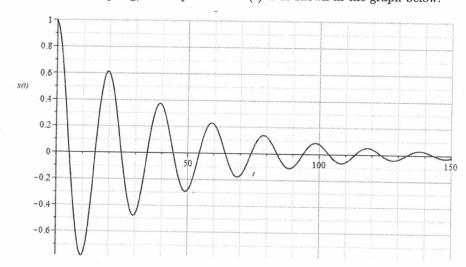


- 6. Show that the function  $f(x) = 2x + \cos(x)$  has exactly one root, and give bounds for where the
- 7. (a) Estimate ln(1.1) using linear approximation about an appropriate point. (b) Estimate the error in part (a).
- 8. Find the solution to the initial value problem

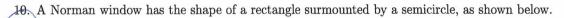


$$x'' - 4x' + 13x = 0$$
,  $x(0) = 1$ ,  $x'(0) = 0$ .

9. Recall that the motion of an object attached to a spring satisfies mx'' + cx' + kx = 0, where x(t) is the displacement from the equilibrium, m is its mass, c is the friction coefficient and k is the spring constant. For a certain spring, the displacement x(t) is as shown in the graph below.



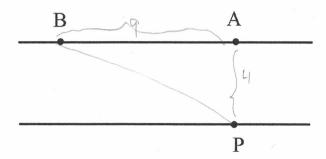
If the mass is known to be m = 1kg, estimate (a) the friction coefficient c, and (b) the spring constant k. You may express your answer in "calculator ready" format.





If the total perimeter of the window is 10m, find the dimensions of the window so that the greatest possible amount of light is admitted.

11. A person in a row boat at point P is 4km away from a straight shore line. The point A on the shore is directly opposite the boat. The objective is to travel from point P to point B on the shore a distance 9km from A in a minimum amount of time. If the person can row at 4 km per hour and walk at 5 km per hour, where should the person land the boat between A and B?



## 12. [BONUS QUESTION]

- (a) Suppose that f(0) = -1 and f''(x) > 0 for all  $x \ge 0$ . Show that f(x) has at most one positive root.
- (b) Sketch an example of a function f(x) with that satisfies the conditions of part (a) but has no positive roots.
- (c) Suppose that f(0) = -1 and  $f''(x) \ge 1$  for all  $x \ge 0$ . Show that f(x) has exactly one positive root.

1) 
$$\frac{6x}{\sqrt{5}x^{2}} \sim \frac{6}{\sqrt{5}}$$

6)  $\frac{2}{3}$ 

c)  $\frac{1}{2}$ 
 $\frac{1}{2}$ 

No such l'exists.

3) 
$$\sqrt{x+h} - \sqrt{x} = \frac{(x+h - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} \sim \frac{h}{h(2\sqrt{x})}$$

$$\downarrow \frac{1}{2\sqrt{x}} \approx h^{\frac{1}{2}}$$

$$\downarrow \frac$$

Sketch:

$$y(e^{-1}) = e^{-e^{-1}\ln(e^{-1})}$$
\* Horizoital asymptote at  $x = \infty$ 

$$= e^{-1}$$
\* Vertical tangent at  $x = 0$ 

(a)  $f(x) > +\infty$  as  $x > +\infty$  so  $f(x) = \pi$ ;  $f(-\frac{\pi}{2}) = -\pi$ 

So  $f(x) > +\infty$  for  $f(-\frac{\pi}{2}) = \pi$ ;  $f(-\frac{\pi}{2}) = -\pi$ 

So  $f(x) > +\infty$  for increasing
$$f(x) > +\infty$$

Apply with  $f(x) + f(x) + f(x) + f(x)$ 

$$f(x) = f(x) + h f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + h f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x) + f(x) + f(x) + f(x) + f(x) + f(x)$$

$$f(x) = f(x) + f(x)$$

$$f(x) = f(x) + f(x$$

Error = 
$$|lu(1.1) \sim 0.1|$$
 =  $\frac{0.005}{5^2}$ ,  $3e(1,1...)$   
8)  $x = e^{\lambda t} \Rightarrow \begin{cases} 2-4\lambda + 13 = 0 \\ \lambda = 4 \pm \sqrt{(6+13.4)} \end{cases}$  (6.5)  $x = \frac{1}{3}$  is  $x = \frac{1}{3}$  in  $x = \frac{1}{3}$  in

$$\begin{array}{c} X(0) = 2B + 3A = 0\\ X(0) = 2B + 3A = 0\\ X(0) = B = 1\\ X = e^{2t} \left[ -\frac{2}{3} \sin(3t) + \cos(3t) \right] \end{array}$$

9) 
$$\lambda = -\frac{c}{2} \pm \sqrt{\frac{c^2 - m \kappa}{4}} = -\frac{c}{2} \pm i \sqrt{\kappa - \frac{c^2}{4}}$$

• Sol'a locus live

 $y = e^{-\frac{c}{2} \pm cos}(\omega t)$ .

• From graph,  $y(40) \sim 0.4 \text{ Ly(0)}$ 
 $= e^{-\frac{c}{2} \cdot 40} = 0.4$ 
 $-c \cdot 20 = \ln 0.4$ 
 $= e^{-\frac{c}{2} \cdot 40} = 0.4$ 

• Frequency:

 $= \ln 0.4$ 
 $= \ln 0.4$ 

$$A = \begin{pmatrix} \frac{x}{2} \\ \frac{x}{2} \end{pmatrix} + \frac{x}{2} = 10$$

$$P = 2y + x + \frac{x}{2} = 10$$

$$\Rightarrow y = \frac{1}{2} + \frac{1}{2}$$

$$\Rightarrow A = x^{2} \begin{pmatrix} \frac{\pi}{4} + \frac{1}{2} \\ \frac{\pi}{2} \end{pmatrix} + 5x$$

$$= x(5 - (\frac{\pi}{4} + \frac{\pi}{2}))$$

$$= x(5 - (\frac{\pi}{4} + \frac{\pi}{2}))$$

$$X = \frac{1}{2} \left( \frac{5}{1 + \sqrt{3}} \right)$$

$$X = \frac{5}{1 + \sqrt{4}}$$

Let X & y as shown. Then time it tower to get from P to B [ if landing at point x] ix:  $T = \frac{4}{4} + \frac{9-x}{5}.$ y= [x2+42], x e[0,9]

 $T = \frac{x}{4} \frac{1}{\sqrt{1+16}} - \frac{1}{5} =$ 

=  $\chi^{2} + 16 = \left(\frac{5}{4} \times\right)^{2} \Rightarrow \chi^{2} = \frac{16}{\frac{25}{16} - 1}$ 

= 16

$$x = \frac{16}{3}$$