Math 1500, final exam 1 review

How to prepare for the final:

- The most effective way is to go over the problems, especially on homeworks, review sheets and midterms.
- Please attempt the problems *before* looking up the answers. Remember: you learn by doing; math is not a spectator sport!

The semester in a nutshell:

- Limits, continuity, delta-epsilon proofs
- Maximum value theorem and intermediate value theorem
- Definition of derivative, increasing/decreasing functions, mean value theorem
- trigs and their inverses (eg. find derivative of arcsin)
- exp-log [including differentiating things like $\sin x^{\ln x}$]
- Applications of derivatives:
 - Sketching of functions (including things like $x^x = e^{x \ln x}$)
 - Related rates: this includes problems involving trig functions, similar triangles etc
 - Optimization problems
 - Exponential growth / Newton's law of cooling
- linear, quadratic approximations including error estimates
- Taylor series
- areas, Fundamental theorem of calculus, Riemann sums

Some additional review questions:

- 1. Continuity and limits:
 - (a) State delta-epsilon definition of continuity. Show that x^2 is continuous.
 - (b) Show that a step function $f(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0 \end{cases}$ is discontinuious at 0.
 - (c) Show that the function $f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is discontinuous at zero.
- 2. Differentiation from first principles: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$. Example: Find the derivative of $f(x) = \sqrt{1+2x}$ using the definition of derivative. No credit will be given if you use differentiation rules but you can use them to check your answer.
- 3. See limit questions on review sheets and homeworks. In addition, do the following limits:

$$\lim_{x \to \infty} \frac{\ln x}{x}, \quad \lim_{x \to \infty} e^{-x+3}, \quad \lim_{x \to 0} x \ln x, \quad \lim_{x \to \infty} \frac{e^x}{\ln x}, \quad \lim_{x \to 0} \frac{\sin(2x)}{x}, \quad \lim_{t \to 0} \frac{1 - \cos(t)}{\ln(1 + t^2)}, \quad \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x) + 4x}$$

- 4. Basic differentiation: for example $\frac{d}{dx} \tan(x \cos 2x)$, inverse trigs (example: $\frac{d}{dx} \arctan(x)$), log differentiation (example: $\frac{d}{dx} \left((\cos x)^{2x} \right)$).
- 5. Show that the function $f(x) = 2x + \cos(x)$ is one-to-one. Let g be the inverse of f. Find g(1) and g'(1).
- 6. Suppose that $\tan y + \arctan x = y^2 x + 1$. Find $\frac{dy}{dx}$ at the point $x = 0, y = \frac{\pi}{4}$.
- 7. IVT, MVT etc:
 - (a) Using the Intermediate Value Theorem, show that there is at least one positive solution to $x^3 1 = x$. Then show that there is exactly one such solution with x > 0 using either Rolle's or Mean Value Theorem.
 - (b) Estimate $\ln(3)$ (Hint: start with $\frac{\ln(3) \ln(e)}{3 e}$ and apply mean value theorem)
 - (c) Suppose that f(0) = 0, f(1) = 0, and f(2) = 1. Show that $f'(a) = \frac{1}{2}$ for some $a \in (0, 2)$. Show that $f''(b) > \frac{1}{2}$ for some $b \in (0, 2)$. Show that $f'(c) = \frac{1}{7}$ for some $c \in (0, 2)$.
- 8. Related rates:
 - (a) A man 2 m tall walks toward a lamppost on level ground at a rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast is the length of the man's shadow decreasing when he is 3 m from the post? How fast is the shadow of his head moving at that time?
 - (b) A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 8 m from the dock?
 - (c) If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, find the rate at which the diameter decreases when the diameter is 10cm.
- 9. Graphing: Sketch the graph of a given function f(x). Indicate behaviour as $x \to \pm \infty$, any asymptotes, roots, critical points, max/min. For example, $f(x) = \frac{e^x}{x^2}$; $f(x) = \frac{x}{x^2-4}$; $f(x) = x^{-x}$. See also graphing questions on review1&2, midterm1&2 and homework questions.
- 10. Max/min:
 - (a) A farmer has 300 meters of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fance along the river. What are the dimensions of the field that has the largest area?
 - (b) At noon, a sailboat is 20 km due south of a freighter. The sailboat is travelling due east at 20 km/hr, and the freighter is travelling due south at 40 km/hr. When are the two ships closest to each other, and what is the distance between them at that point?
 - (c) See max/min questions on review2, midterm2 and homeworks.

11.

(a) A radioactive substance decays at a rate r and is being replenished at a constant rate h. That is,

$$\frac{dy}{dt} = -ry + h$$

Solve this differential equation with initial condition $y(0) = y_0$. Find the limit $\lim_{t \to \infty} y(t)$.

- (b) See midterm 2 questions.
- (a) A particle is moving on a straight line and its acceleration at time t is given by $a(t) = \sqrt{t}$. At time t = 0 its position is given by p(0) = 2 and its velocity is v(0) = 3. Find the position of the particle at time t = 1.

- (b) A car is travelling at 25 m/sec when the driver sees an accident 80m ahead and slams on the breaks. What constant acceleration is required to avoid pileup?
- 12. Linear approximations etc; see also questions on review sheets and homeworks
 - (a) Use linear approximation to estimate $(25)^{1/3}$. Then find an interval [a, b] to guarantee that $(25)^{1/3} \in [a, b]$.
 - (b) Use quadratic approximation to estimate $(25)^{1/3}$. Estimate the maximum error.
 - (c) Estimate $\cos(1)$ using Taylor series around x = 0. Use the first three non-zero terms. What is the error in your estimate? Compare with the answer you get from a calculator.
- 13. See Taylor series questions on homeworks/review sheet.
 - (a) Write a Taylor series expansion of $f(x) = \frac{\ln(1-x)}{x}$.
 - (b) Using your answer in (a), show that

$$\int_0^1 \frac{\ln(1-x)}{x} = -1 - \frac{1}{4} - \frac{1}{9} \cdots$$

- 14. (a) Set up the Riemann sum to approximate the area under the curve $y = \frac{1}{x^3+1}$ between x = 1 and x = 2 with n = 3 subintervals and with the sample points taken at the left endpoints. Sketch a diagram to illustrate.
 - (b) Show that $\int_{1}^{2} \frac{1}{x^{3}+1} dx \leq 3/8$. (hint: first show that $\frac{1}{x^{3}+1} \leq \frac{1}{x^{3}}$)
 - (c) Suppose that $g(x) = \int_{\ln(x)}^{x^2-1} \frac{1}{\sqrt{t}+t^2} dt$. Find g(1) and g'(1).
 - (d) Suppose that $f(x) = 1 \int_2^x f(x)$. Find f(x).
- 15. Evaluate the following integrals.

$$\int_{0}^{4} \sqrt{1+2x} dx; \qquad \int \sin(x^{2}) x dx; \qquad \int_{0}^{\pi/2} (\cos s)^{3} ds; \qquad \int \frac{\ln(2x+4)}{x+2} dx$$
$$\int \sin^{2}(2x) dx; \qquad \int_{0}^{\pi/2} \sin(x) \cos(x)^{2} dx.$$

16. Sketch the region bounded by the curves $x = 2y^2$ and x + y = 1. Find its area.