MATH 1500, Homework 13

Due date: Wed, 10 February

- 1. (a) Prove that the equation $x = \cos x$ has precisely one solution.
 - (b) Find its solution using an iteration $x_{n+1} = \cos(x_n)$. starting with $x_1 = 1$. How many iterations were required to get two decimal digits? [Make sure your calculator/computer is set to "radians" mode].
 - (c) Prove that the iteration that you used in part (b) will eventually converge.
 - (d) Use Newton's method to find the root of $x = \cos x$. List the first five iterations starting with x = 1. How many iterations were required to get the first 8 digits?
- 2. Consider the equation

$$x = A\cos x. \tag{1}$$

In Question 1, you showed that the solution is unique if A = 1. However for larger values of A, this equation can have more than one solution (see the graph below).

Figure 1: Graph of $y = \cos x$, $y = 3\cos x$, $y = 6\cos x$ and y = x.

- (a) Note from the graph that a new solution to (1) appears around A = 3. So there exists a smallest A, call it A_1 so that (1) has one solution when $A < A_1$, has two solutions when $A = A_1$ and has three (or more) solutions when $A > A_1$. Formulate a set of equations that A_1 satisfies.
- (b) Apply Newton's method to find A_1 to 4 decimal places.
- (c) Similar to part (a), there exists A_2 such that (1) has three solutions when $A < A_3$ but has (at least) five if $A > A_2$. Find A_2 to 4 decimal places using Newton's method.

3. Let

$$f(x) = x + a(e^{-x} - 1)$$

and consider the map $x_{n+1} = f(x_n)$.

- (a) Show that x = 0 is a fixed point of this map.
- (b) For which values of a is this fixed point stable?

- (c) [Bonus] Use a computer (e.g. Matlab, Maple, Java, C or any other programming language) to sketch a bifurcation diagram of f(x) with $a \in [1.8, 4]$. That is, for values of a between 1.8 and 4 with increments of (say) 0.01, plot x_n for (say) n = 100 to 1100.
- 4. As we saw in class, Newton's method gives an excellent convergence in most cases. However the convergence can be relatively poor if f has a double root i.e. f(r) = f'(r) = 0.
 - (a) Illustrate this by using Newton's method to find the root of $f(x) = x^2$. What kind of convergence do we have in this case?
 - (b) [Bonus] Generalize part (a) to a general function f(x) with f(r) = 0, f'(r) = 0and $f''(r) \neq 0$. Show that if $E_n = |x_n - r|$ then $E_{n+1} \sim \frac{1}{2}E_n$ when x_n is sufficiently close to r.