MATH 1500, Homework 8

Due date: Monday 23 November.

- 1. Section 4.9: 17, 18, 27.
- 2. A given function F(x) satisfies:

$$F(1) = 1; F'(1) = 2, F''(1) = 3, F'''(x) = 4x - 5\sin(x^6) + \frac{7}{x}.$$

- (a) Estimate F(0.9) using quadratic approximation. What is the maximum error in your estimate? Hint: recall that $|a + b| \le |a| + |b|$.
- 3. Write the full Taylor series of the following functions, centered at x = 0. Write down enough terms so that the general pattern is visible.

(a)
$$f(x) = \sin(x^2)$$

(b) $f(x) = \frac{1}{1+x}$
(c) $f(x) = \frac{1}{1+x^2}$
(d) $f(x) = \frac{1}{2-x}$
(e) $f(x) = \frac{1}{2+x^2}$
(f) $f(x) = \ln(2+x^2)$

HINT: All you need is the Taylor series for $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$ and for $\frac{1}{1-x} = 1 + x + x^2 + \cdots$ HINT2: For (d), write $\frac{1}{2-x} = \frac{1}{2} \left(\frac{1}{1-x/2} \right)$.

- 4. (a) Note that $\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$. Use this fact to show that the full Taylor series for $f(x) = \frac{1}{(1-x)^2}$ is $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \cdots$
 - (b) Note that $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$. Use this fact and question (3c) to determine the full Taylor series for $f(x) = \arctan x$.
 - (c) Recall that $\tan(\pi/6) = \frac{1}{\sqrt{3}}$. Use this fact and your answer in (b) to prove that

$$\pi = 2\sqrt{3}\left(1 - \frac{1}{3}\frac{1}{3} + \frac{1}{5}\frac{1}{3^2} - \frac{1}{7}\frac{1}{3^3} + \frac{1}{9}\frac{1}{3^4}\dots\right)$$

Use this series to determine π to three decimal places. How many terms did you need?

5. Section 4.3 numbers 1, 2, 3, 13, 16. [You can use either using Taylor series or L'Hopital's rule].