Romberg integration example

Consider

$$
\int_{1}^{2} \frac{1}{x} d x=\ln 2 .
$$

We will use this integral to illustrate how Romberg integration works. First, compute the trapezoid approximations starting with $n=2$ and doubling n each time:
$n=1: T_{1}^{0}=\left(1+\frac{1}{2}\right) \frac{1}{2}=0.75 ;$
$n=2: T_{2}^{0}=0.5\left(\frac{1}{1.5}\right)+\frac{0.5}{2}\left(1+\frac{1}{2}\right)=0.708333333$
$n=4: T_{3}^{0}=0.25\left(\frac{1}{1.25}+\frac{1}{1.5}+\frac{1}{1.75}\right)+\frac{0.25}{2}\left(1+\frac{1}{2}\right)=0.69702380952$
$n=8: T_{4}^{0}=0.69412185037$
$n=16: T_{5}^{0}=0.69314718191$.
Next we use the formula:

$$
T_{k}^{i}=\frac{4^{i} T_{k}^{i-1}-T_{k-1}^{i-1}}{4^{i}-1}
$$

The easiest way is to keep track of computations is to build a table of the form:

T_{1}^{0}				
T_{2}^{0}	T_{2}^{1}			
T_{3}^{0}	T_{3}^{1}	T_{3}^{2}		
T_{4}^{0}	T_{4}^{1}	T_{4}^{2}	T_{4}^{3}	
T_{5}^{0}	T_{5}^{1}	T_{5}^{2}	T_{5}^{3}	T_{5}^{3}

Starting with the first column (which we just computed), all other entries can be easily computed. For example starting with T_{1}^{0}, T_{2}^{0} we find

$$
\begin{aligned}
& T_{2}^{1}=\frac{4 T_{2}^{0}-T_{1}^{0}}{3}=0.694444 \\
& T_{3}^{1}=\frac{4 T_{3}^{0}-T_{2}^{0}}{3}=0.693253 ; \quad T_{3}^{2}=\frac{16 T_{3}^{1}-T_{2}^{1}}{15}=0.69317460
\end{aligned}
$$

and so on. Every entry depends only on its left and left-top neighbour. Continuing in this way, we get the following table:

| $\mathbf{0 . 7 5 0 0 0 0 0 0 0 0 0}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0 . 7 0 8 3 3 3 3 3 3 3 3}$ | $\mathbf{0 . 6 9 4 4 4 4 4 4 4 4 4}$ | | | |
| $\mathbf{0 . 6 9 7 0 2 3 8 0 9 5 2}$ | $\mathbf{0 . 6 9 3} 25396825$ | 0.69317460317 | | |
| $\mathbf{0 . 6 9 4 1 2 1 8 5 0 3 7}$ | $\mathbf{0 . 6 9 3 1 5 4 5 3 0 6 5}$ | $\mathbf{0 . 6 9 3 1 4 7 9 0 1 4 8}$ | $\mathbf{0 . 6 9 3 1 4 7 4 7 7 6 4}$ | |
| $\mathbf{0 . 6 9 3 3 9 1 2 0 2 2 0}$ | $\mathbf{0 . 6 9 3 1 4 7} 65281$ | $\mathbf{0 . 6 9 3 1 4 7 1 9 4 2 9}$ | $\mathbf{0 . 6 9 3 1 4 7 1 8 3 0 7}$ | $\mathbf{0 . 6 9 3 1 4 7 1 8 1 9 1}$ |

The correct digits are shown in bold (the exact answer to 15 digits is given by $\ln 2=0.693147180559945$). Here is the table listing error $T_{i}^{k}-\ln 2$.

$5.7 \mathrm{e}-02$				
$1.5 \mathrm{e}-02$	$1.3 \mathrm{e}-03$			
$3.9 \mathrm{e}-03$	$1.1 \mathrm{e}-04$	$2.7 \mathrm{e}-05$		
$9.7 \mathrm{e}-04$	$7.4 \mathrm{e}-06$	$7.2 \mathrm{e}-07$	$3.0 \mathrm{e}-07$	
$2.4 \mathrm{e}-04$	$4.7 \mathrm{e}-07$	$1.4 \mathrm{e}-08$	$2.5 \mathrm{e}-09$	$1.4 \mathrm{e}-09$

Note that each successive iteration yields around two extra digits (why?). The final iteration only required $n=16$ function evaluations, plus $O(\ln n)$ arithmetic operations to build the table.

Exercise. Use four iterations of Romberg integration to estimate $\pi=\int_{0}^{1} \frac{4}{1+x^{2}} d x$. Comment on the accuracy of your result.

