Some review questions

- 1. Evaluate $\int_D e^{x+y} dA$ where D is a region bounded by lines x = 0, y = 0 and y + x = 1. (answer: 1).
- 2. Evaluate $\int \int \int_D (x^2 + y^2 + z^2) dV$ where D is a region bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ with $0 \le z \le 1$ and with $x, y \ge 0$.
- 3. A solid ball of radius a has density given by $(2a \rho)$ where $\rho = \sqrt{x^2 + y^2 + z^2}$. Determine its mass.

4.

- (a) Compute the volume of the ellipsoid $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$. (hint: change the coordinates for the sphere)
- (b) Give the parametrization of the surface of the ellipsoid $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$ in terms of the spherical coordinates.
- (c) Suppose that a = b and c = 1. Determine the surface area of the ellipsoid in this case. Answer: $2\pi a \left(a + \frac{\operatorname{arcsinh}\sqrt{|a^2-1|}}{\sqrt{|a^2-1|}}\right)$
- 5. In this question we compute the graviational attraction F of a point of mass m to a disk of density σ and radius a located a distance b from it and such that the line from the center of the disk to the point mass is perpendicular to the disk itself. Here is the figure:

Newton's law states that the gravitational force between two point masses has the magnitude km_1m_2/d^2 where k is a universal constant.

- (a) Show that $F = km\sigma b \int \int_D \frac{dA}{(r^2+b^2)^{2/3}}$. [hint: horizontal components of the force cancels by symmetry]]
- (b) Evaluate this integral to find that

$$F = 2\pi km\sigma \left(1 - \frac{b}{\sqrt{a^2 + b^2}}\right).$$

(c) Deduce that for disks of large radius, the attraction is independent of the distance *b*.

6. Evaluate $\int \int_S z dS$ where S is a conical surface $z = \sqrt{x^2 + y^2}$ between z = 0 and z = 1. Answer: $2^{3/2}\pi/3$.

7.

- (a) State Green's theorem.
- (b) Use Green's theorem to prove the divergence theorem in 2D: $\int_D \nabla \cdot \vec{F} dx = \int_{\partial D} \vec{F} \cdot \hat{n} ds$.
- 8. Show that the center of mass of a simply connected region D is given by

$$\bar{x} = \frac{1}{2A} \int_{\partial D} x^2 dy, \quad \bar{y} = \frac{1}{2A} \int_{\partial D} y^2 dx.$$

9. Show the Green's first identity:

$$\int \int_D f \Delta g dA = \int_{\partial D} f \nabla g \cdot \hat{n} dS - \int \int_D \nabla f \cdot \nabla g dA$$

Here, $\Delta f = \nabla^2 f = \nabla \cdot (\nabla f)$ is the Laplace operator [in two dimensions, show that $\Delta f = f_{xx} + f_{yy}$].

10. Show the Green's second identity:

$$\int \int_{D} (f\Delta g - g\Delta f) dA = \int_{\partial D} (f\nabla g - g\nabla f) \cdot \hat{n} dS$$

- 11. Show that $g(\vec{x}) = \ln |\vec{x}|$, where $\vec{x} = (x, y)$ satisfies $\Delta g = 0$ whenever $\vec{x} \neq 0$.
- 12. [q62 p.1134] Find area of the surface obtained by intersecting the cylinders $x^2 + z^2 = 1$ and $y^2 + z^2 = 1$.

- 13. Let S be the surface of the upper half of the unit sphere $(z > 0, x^2 + y^2 + z^2 = 1)$. Determine the center of mass of this shell.
- 14. Show the following identities:

(a) $\operatorname{div}(fF) = f \operatorname{div} F + F \cdot \nabla f$ (b) $\operatorname{curl}(fF) = f \operatorname{div} F + F \cdot \nabla f$

- 15. Let $F(\vec{x}) = \vec{x} |\vec{x}|^p$, where $\vec{x} = (x, y, z) \in \mathbb{R}^3$. Compute div *F*. Is there a value of *p* such that div F = 0? what about curl *F*?
- 16. Find the flux of $\vec{F} = (y, z y, x)$ across the surface of the tetrahedron whose vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).
- 17. Determine the work done (against gravity) to fill the tetrahedron whose vertices are as in previous question (measured in meters), with water (whose density is 1000 kg/m³). Assume the water is all on the ground z = 0.