Name: Banner#:

- 1. Let $F(x, y, z) = (z^2 x, \frac{1}{3}y^3 + \tan z, x^2 z + y^2).$
 - (a) Use the divergence theorem to compute the flux $\int_S F \cdot \hat{n} \, dS$ where S is surface of a unit sphere $x^2 + y^2 + z^2 = 1$, and \hat{n} is outwards-pointing unit normal.
 - (b) Let S_1 be the unit disk in the xy plane given by $\{x^2 + y^2 \le 1, z = 0\}$. Compute the flux of F through S_1 , assuming the unit normal is pointing up.
 - (c) Compute the flux $\int_{S_2} F \cdot \hat{n} \, dS$ where S_2 is the top half of the unit sphere, $\{x^2 + y^2 + z^2 = 1, z \ge 0\}$, assuming the unit normal is pointing up.
- 2. Let C be a simple closed curve that lies in the plane x + y + z = 1 and whose area is 1. Use Stokes Theorem to find the line integral $\int_C z dx 2x dy + 3y dz$.