MATH 2400, Homework 3

Due: Monday, 10 October

- 1. Given the data points (x, y) = (0, 1), (2, 0), (4, 2), write down the interpolating polynomial through these points using
 - (a) Lagrange's polynomial
 - (b) Newton's divided differences polynomial.
 - (c) Using either (a) or (b), estimate the minimum of a function that goes through these three points (estimate both x and y coordinates of the minimum).
- 2. Assume that the polynomial $P_9(x)$ interpolates the function $f(x) = \exp(2x)$ at the 10 evenly spaced points $x = 0, 1/9, 2/9, \dots 8/9, 1$.
 - (a) Find an upper bound for the error $|f(1/2) P_9(1/2)|$. How many decimal places can you guarantee to be correct if $P_9(1/2)$ was used to approximate e?
 - (b) Why is this a silly way to compute e?
- 3. List the Chebyshev interpolation nodes $x_1, \ldots x_n$ on the interval [a, b] for
 - (a) n = 5, [a, b] = [-1, 1]
 - (b) n = 5, [a, b] = [0, 2]
 - (c) n = 5 [a, b] = [0, 1].

(Note: please only list the first three decimal places)

- 4. Find $\max_{x \in [a,b]} |(x-x_1)\cdots(x-x_n)|$ with n and [a,b] as given in question 3.
- 5. Find $\max_{x \in [a,b]} |(x-x_1)\cdots(x-x_n)|$ with n arbitrary and [a,b] as given in question 3.
- 6. Let $P_4(x)$, be the 4th degree interpolating polynomial of $\exp(-x)$ using Chebyshev points on the interval [0, 1].
 - (a) Using the Interpolation error formula combined with Q5, determine the bound for $|P_4(0.6) \exp(-0.6)|$.
 - (b) Using a computer, plot $P_4(x) \exp(-x)$. Hand in your plot. How well does it agree with part (a)?
- 7. The function y = f(x) is tabulated as follows:

- (a) Set up a linear system of equations to find the spline through these points with natural endpoint conditions.
- (b) Solve the system you set up in part (a).
- (c) Estimate f(1.5) and f'(1) using the spline approximation you found.
- (d) Using spline([0,1,2,3], [0,0,1,1], x) command in Maple or the equivalent command in Matlab/octave, verify your answer to parts (b) and (c).
- 8. The purpose of this question is to compare the error from Chebychev interpolation vs. uniform interpolation. Let

$$P_n(x) = \prod_{i=1}^n \left(x - \frac{i-1}{n-1} \right)$$

and let $Q_n = \prod_{i=1}^n (x - c_i)$ where c_i are the *n* Chebychev interpolation nodes shifted to the interval [0,1].

- (a) Using a computer, plot $P_n(x)$ and $Q_n(x)$ for n = 10 and n = 20. What can you say about $\max_{x \in [0,1]} |P_n(x)|$ and $\max_{x \in [0,1]} |Q_n(x)|$?
- (b) **[BONUS]** Estimate $|P_n(1/2)|$ when *n* is even and large. How does it compare with $|Q_n(1/2)|$? NOTE: you may find the following formula useful, called the "Sterling's formula":

$$n! \approx \sqrt{2\pi} n^{n+1/2} e^{-n}$$
 for large n .

(c) **[BONUS, hard]** What can you say about the $\max_{x \in [0,1]} |P_n(x)|$? How does it compare with $\max_{x \in [0,1]} |Q_n(x)|$?