MATH 2400 HW 4

- 1. Consider $I = \int_0^1 \exp(-x^2) dx = 0.7468241328124270.$
 - (a) Estimate I using the Trapezoid rule with n = 4 subintervals.
 - (b) Estimate I using the Simpson's rule with n = 4 subintervals.
 - (c) How many subintervals n are needed to estimate I with Trapezoid rule to within 10^{-5} ?
 - (d) Estimate I using Gauss quadrature with n = 1 subinterval and N = 2 collocation points.
 - (e) Estimate I using Gauss quadrature with n = 1 subinterval and N = 3 collocation points.
 - (f) Use Romberg integration to compute I numerically to within 10^{-5} (Use enough iterations until you see that the answer doesnt change anymore in the first 5 digits).
- 2. Suppose you use a certain numerical method, call it M(h) which depends on the stepsize h to estimate some problem G of great importance. You know that the error has the form $O(h^p)$; that is, $M(h) = G + ah^p + \ldots$ as $h \to 0$, but you are not sure what p is. So you make the following table

h	M(h)
0.01	0.79818
0.005	0.76642
0.0025	0.74442

- (a) From the data given, estimate p.
- (b) Use the extrapolation along with the answer you obtained in part (a) to estimate G as accurately as you can.
- 3.
- (a) Consider $I = \int_{-h/2}^{h/2} f(x)$ where f(x) has continuous 2nd derivative. Use the Taylor series expansion of f(x) at x = 0 to estimate the error E = I hf(0).
- (b) Prove the error formula for the midpoint rule: Let

$$M_N = h [f(x_1) + f(x_2) \cdots f(x_N)]$$

where $h = (b - a) / N; \quad x_i = a + hi - h/2$

Then $\left|\int_{a}^{b} f(x) - M_{n}\right| \leq \frac{M}{24}(b-a)h^{2}$ where $M \geq \max_{[a,b]} \left|f''(x)\right|$.

- 4. Given that f(x) is sufficiently smooth, find the bound for the error $E = \left| \int_{-1}^{1} f(x) dx M \right|$ where M is one of the following: (a) M = f(1) + f(-1) (b) $M = \frac{2}{3} \left[f(-1) + f(0) + f(1) \right]$ (c) $M = f(-1/\sqrt{3}) + f(1/\sqrt{3})$
- 5. If a function is smooth and periodic, the Trapezoid rule has a much better convergence. To illustrate this, consider the function

$$f(x) = \exp(\sin(x))$$

which is periodic with period 2π .

- (a) It is known that $I = \int_0^{2\pi} f(x) dx = 7.95492652101284$, accurate to all digits given. Estimate I using Trapezoid rule T_n with n = 1, 2, 4, 8. Make an table of n, T_n, E_n where $E_n = |T_n I|$ is the error.
- (b) Based on the evidence from part (a), what do you think is the error behaviour?

(c) [BONUS QUESTION] Suppose that a function can be expanded in a finite Fourier series as

$$f(\theta) = \sum_{m=-n}^{n} c_m \exp(im\theta).$$

Show that in this case, T_n is an exactly the $\int_0^{2\pi} f(\theta) d\theta$. (d) [BONUS QUESTION] Use part (c) to explain what you observed in parts (a,b).