MATH 2400 HW 5

Due date: $\leq\!\!11$ Nov (Fri)

- 1. Richardson extrapolation can be used with with ODEs. Here we demonstrate how.
 - (a) Let A(h) be the solution to y'(t) = y(t) with y(0) = 1 at t = 1 using the forward Euler with stepsize h; so that y(1) = A(0). In class we have shown that A(h) y(1) = O(h). In fact, it is possible to show a more precise statement, that

$$A(h) = A(0) + a_1h + a_2h^2 + a_3h^3 + \dots$$

Given $A_1 = A(h)$ and $A_2 = A(h/2)$, show how extrapolation can be used to approximate y(1) up to $O(h^2)$.

- (b) Let $A_1 = A(1)$, $A_2 = A(0.5)$, $A_3 = A(0.25)$ and so on. Print out a table A_0 up to A_6 (thus n = 64 and h = 1/64 to compute A_6) Knowing that $\exp(1) = 2.7182818284590$, what is the error $A_6 \exp(1)$?
- (c) Similar to Romberg integration, build a triangular array that approximates exp(1) as accurately as you can using only the data in part (b). How many digits of exp(1) did you get? Print out the extrapolation table.
- 2. Consider the method $y_{i+1} = y_i + h\left(\frac{1}{3}f(y_i) + af(y_i + hbf(y_i))\right)$, as applied to y' = f(y).
 - (a) How should you choose a and b to minimize the local error? What is the order of the local and global error of the resulting method?
 - (b) Show that the stability region of this method is the same as the stability region for the Trapezoid method $y_{i+1} = y_i + \frac{h}{2} \left(f(y_i) + f(y_i + hf(y_i)) \right)$.

3.

- (a) Implement the variable-step method RK2/3 as described in the book, example 6.19 page 332. Test your RK2/3 on the ODE y'(t) = y(t) with y(0) = 1 and with $t \in [0, 1]$. Take the local relative error tolerance to be T = 0.005. Output the result, including all the t_i and y_i , similar as was done in Figure 6.19 on page 337. What is the minimum and maximum stepsize?
- (b) Repeat part (a), but instead of using relative error tolerance $T |w_i| = ch^{p+1}$ as given by formula (6.56) of the book, use the absolute error tolerance given by $T = ch^{p+1}$.
- 4. Consider the following multi-step method:

$$y_{i+1} = 3y_i - 2y_{i-1} + h\left(\frac{1}{2}f(y_i) - \frac{3}{2}f(y_{i-1})\right).$$

- (a) Show that this method has $O(h^3)$ local error.
- (b) Use this method to solve y' = -y, y(0) = 1 with h = 0.1, h = 0.05. For each h, plot the points (ih, y_i) for i = 0..n with n = 1/h. Hand in the outputs. What do you observe? NOTE: to plot solution, if using matlab, see p.344 of the book. If using maple, you can use the worksheet multistep.mws from the course website and modify it appropriately.
- (c) Show that this method is unstable even if h = 0.