Homework 1

- 1. Sketch the parametric curve $x = \sin(t), y = -t, t = -\pi \dots \pi$. Use arrows to indicate the direction of increasing t.
- 2. Find a parametric equation for a circle of radius 2, centered at (3, 4).
- 3. (a) Sketch the region enclosed by the curve $x = t^2$, $y = \sin t$, $0 \le t \le 1$, the x-axis and the line x = 1. (b) Find the area of this region.
- 4. (a) Sketch the region enclosed by the curve $x = t^2 t, y = \sqrt{t}$, and the y-axis. (b) Find the area of this region.
- 5. Consider a parameteric curve given by $x = \sin t, y = \cos^2 t; t \in [0, \pi/2].$
 - (a) Sketch this curve.
 - (b) Determine the equation of the line tangent to this curve at $t = \pi/2$.
 - (c) Determine the area bounded by this curve and the x and y axes.
- 6. Sketch the following curves given in polar coordinates: (a) $r = 1 \cos \theta$, $0 \le \theta \le 2\pi$; (b) $r = 1 + \cos(\theta)$, $0 \le \theta \le \pi$; (c) $r = 1 + \cos(2\theta)$, $0 \le \theta \le \pi$.
- 7. Find the length of the curve $x = e^{-t} \cos(2t)$, $y = e^{-t} \sin(2t)$, t = 0..2.
- 8. Sketch the curve $(x^2 + y^2)^3 = 4x^2y^2$ by first converting it to polar coordinates. Hint: $2\cos\theta\sin\theta = \sin(2\theta)$.
- 9. A cow is tied to a silo with radius 1 by a rope just long enough to reach the opposite side of the silo. Find the area available for grazing by the cow.

