Homework 1

1. Sketch the parametric curve $x=\sin (t), y=-t, \quad t=-\pi \ldots \pi$. Use arrows to indicate the direction of increasing t.
2. Find a parametric equation for a circle of radius 2 , centered at $(3,4)$.
3. (a) Sketch the region enclosed by the curve $x=t^{2}, y=\sin t, 0 \leq t \leq 1$, the x -axis and the line $x=1$. (b) Find the area of this region.
4. (a) Sketch the region enclosed by the curve $x=t^{2}-t, y=\sqrt{t}$, and the y-axis. (b) Find the area of this region.
5. Consider a parameteric curve given by $x=\sin t, y=\cos ^{2} t ; t \in[0, \pi / 2]$.
(a) Sketch this curve.
(b) Determine the equation of the line tangent to this curve at $t=\pi / 2$.
(c) Determine the area bounded by this curve and the x and y axes.
6. Sketch the following curves given in polar coordinates: (a) $r=1-\cos \theta, \quad 0 \leq \theta \leq$ 2π; (b) $r=1+\cos (\theta), \quad 0 \leq \theta \leq \pi$; (c) $r=1+\cos (2 \theta), \quad 0 \leq \theta \leq \pi$.
7. Find the length of the curve $x=e^{-t} \cos (2 t), y=e^{-t} \sin (2 t), t=0 . .2$.
8. Sketch the curve $\left(x^{2}+y^{2}\right)^{3}=4 x^{2} y^{2}$ by first converting it to polar coordinates. Hint: $2 \cos \theta \sin \theta=\sin (2 \theta)$.
9. A cow is tied to a silo with radius 1 by a rope just long enough to reach the opposite side of the silo. Find the area available for grazing by the cow.

