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We consider a single spot solution for the Schnakenburg Model in a two-dimensional unit disk
in the singularly perturbed limit of a small diffusivity ratio. For large values of the reaction-time
constant, this spot can undergo two different types of instabilities, both due to a Hopf bifurcation.
The first type induces oscillatory instability in the height of the spot. The second type induces a
periodic motion of the spot center. We use formal asymptotics to investigate when these instabilities
are triggered, and which one dominates. In the parameter regime where spot motion occurs, we
construct a periodic solution consisting of a rotating spot, and compute its radius of rotation and
angular velocity. Detailed numerical simulations are performed to validate the asymptotic theory,
including rotating spots. More complex, non-circular spot trajectories are also explored numerically.

1. INTRODUCTION

The Schnakenburg model, introduced in [1], is a particular case of the activator-substrate system. It was originally
formulated as a simplified model of a trimolecular autocatalytic reaction with diffusion. It is also a limiting case of
both the Gray-Scott model as well as the Klausmeyer model of vegetation pattern formation on a flat ground when
the water evaporation is limited [2]. Some applications of Schankenburg model to biology include pattern formations
in embryogenesis and skin patterns [3, 4]. However arguably its biggest value is that it serves as a simple prototype
model for studying pattern formation in reaction-diffusion systems: it is among the simplest class of models which
generate stable inhomogeneous patterns. As such, the Schnakeberg and related models such as Gray-Scott, the
Brusselator, and the Gierer-Meinhardt model, have been extensively studied (especially in one, but also and two and
higher dimensions), and phenomena such as spike formation, stability, self-replication, oscillations and motion has
been analysed in detail. A very incomplete list of references includes [5–18].

In [7–9] the authors have found that a single spike in a one-dimensional Gray-Scott model can undergo destabilizing
oscillations in either its height or position. The height oscillations happen on a much faster timescale when compared
to the position oscillations. Which instability is triggered first depends on the value of the feed-rate A representing
the amount of the substrate chemical that is being pumped into the system. Typically, height oscillations were
triggered at lower feed rates than the position oscillations. Periodic spike motion in one dimensional GS model was
further investigated in [17].

In one-dimensional domain, there has been much work over the past decade in analyzing the stability, dynamics,
and self-replication of spike patterns for the Schakenberg model and related models with similar structure. The
stability problem for equilibrium spike patterns in infinite domain has been studied in [14] and [11] following earlier
work on Gierer-Meinhardt model [19]. In [20], the authors studied Hopf bifurcations and oscillatory instabilities of
spike solutions of Gierer-Meinhardt model for various ranges of the reaction-time constant. For a recent summary on
pattern formation in GM model, see [21] and references therein. A detailed study of self-replication, overcrowding
instability, and spike height and position oscillations for the Gray-Scott model is conducted in [6–9, 17, 22]. Self-
replication in slowly growing domains was also studied in [23] and [24].

In two dimensions, Muratov and Osipov [10] were among the first to study the Gray-Scott model, including self-
replication thresholds. Wei and Winter [12] reviewed analytical methods for a rigorous study of the existence and
stability of stationary, multiple spots for reaction-diffusion systems and considered two classes of reaction-diffusion
systems: activator-inhibitor systems (such as the Gierer-Meinhardt system) and activator-substrate systems (such
as the Gray-Scott system or the Schnakenberg model). In [13], spot replication for the Schnakenberg model was
studied. In [16], the authors studied multi-spot patterns including competition, spot motion, and self-replication, for
the related Gray-Scott model.

The purpose of this work is two-fold. First, we extend the results in [7–9] on thresholds for oscillatory instabilities for
both height and spike position (and particularly periodically moving spikes) from one dimension to a two-dimensional
setting. Second, we investigate the spot trajectory (i.e. the path traced by the spot center) and the kind of complex
two-dimensional motion that can result.

We will use the following scaling of the Schankenberg model,

vt = ε2∆v − v + v2u, τut = ∆u+A− v2u

ε2
inside Ω ⊂ R2; ∂nv = ∂nu = 0 on ∂Ω. (1.1)

Throughout this paper, we assume Ω to be a unit disk,

Ω is a unit disk; Ω =
{
x ∈ R2 : |x| < 1

}
, (1.2)
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FIG. 1. Two types of dynamics of a single spike solution of the Schnakenberg model. Top row: height oscillations on O(1)
timescale. Three snapshots of v(x, t) are shown at times as indicated. Parameters are ε = 0.03, A = 1, τ = 0.07. Top right
shows the height of the spike as a function of time. The spike remains at the center of the disk. Bottom row: periodic motion
of the spot on a slow timescale. Three snapshots of u(x, t) are shown. Bottom right shows the trajectory of the spot center.
Parameters are ε = 0.02, A = 8, τ = 0.15/ε2. Dashed line shows the asymptotic prediction for the spot trajectory (Proposition
6.1)

although some of our results can be extended to more general domains.

Here, ε� 1, A > 0 and τ > 0, represent diffusivity, the feed-rate and the reaction-time constant respectively. The
equations model the following process: the fast-diffusing substrate u is consumed by a slowly diffusing activator v,
which decays in time. The substrate is being pumped into the system at a constant rate, represented by parameter
A. The reaction kinetics for u and v occur at different scales (depending on the choice of τ). Of particular interest
to us will be the regime where τ is very large, so that u reacts much slower than v. As we will show, the oscillatory
instabilities (both for spike height and positions) are triggered when τ is very large.

In this paper we consider the effect of increasing the parameter τ on a single spot at the center of the unit disk.
The associated linearized eigenvalue problem has eigenfunctions of the form φ(r)eimθ in the polar coordinates. Due
to underlying translational invariance, the eignvalues corresponding to mode m = ±1 are asymptotically small as
ε → 0 and their instability induces a slow (possibly periodic) motion of the spot. We refer to these eigenvalues as
small eigenvalues. All other eigenvalues are referred to as large eigenvalues. The mode m = 0 corresponds to purely
radial perturbations and its instability can induce spike oscillation or collapse, whereas the instability with respect
to mode m = 2 eigenvalues triggers self-replication [10, 13, 16, 25]. Here, we only concentrate on modes m = 0, 1
since τ does not appear to trigger instability of the higher modes.

Two different types of instabilities can be triggered when τ is sufficiently increased as illustrated in Figure 1: either
large or small eigenvalues can undergo a Hopf bifurcation. The former instability triggers height oscillations, whereas
the latter triggers slow translational instabilities in spike position, inducing (typically periodic) spike motion. Which
one is triggered first depends on values of ε and A.

Our main task is to classify precisely for which parameters A and ε does the spike motion (as opposed to height
oscillations) occur when τ is increased sufficiently? In §5 (Proposition 5.1) we give a concise characterisation in terms
of the following threshold. Let

Ac ∼
6.283√

log

{
(log

1

ε
)1.010− 0.1433

} . (1.3)
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FIG. 2. (a) Hopf bifurcations values for height and position oscillations (τh,large and τh,small, respectively), as a function of A,
and with ε = 0.02. Theoretical predictions given by Propositions 3.1 and 4.1 are also shown. The intersection of τh,large and
τh,small is denoted by Ac. (b) Comparison between the asymptotic value of Ac given by (1.3) and the numerically computed
value for several small ε.

In the limit ε → 0, for values of A bigger than Ac, spike motion is observed as τ is sufficiently increased, whereas
when A < Ac, increasing τ triggers height oscillations. This threshold follows from computing the thresholds τh,large
and τh,small, corresponding to the Hopf bifurcation points for small and large eigenvalues, respectively. This is done
in §3, and §4 to obtain

τh,large ∼
19.929

A2ε2
exp

(
−39.474

A2

)
; τh,small ∼

1

ε2A2

19.737

log 1
ε − 0.1419

(1.4)

in the critical regime O
(

1
log 1/ε

)
� A2 � O(1). In fact the threshold (1.3) is obtained from (1.4) by simply setting

τh,large = τh,small.

The threshold (1.3) has a striking log log scaling. Despite such a slow convergence rate, remarkably it agrees
relatively well with numerical experiments even when ε = 0.01 (see Figure 2).

In §6 we analyse what happens beyond the Hopf bifurcation for small eignevalues, in the regime τh,small < τ <
τh,large. In this regime, the spot starts to move and there exists time-dependent solutions in a form of a rotating
spot. We compute the radius and speed of the rotation in Proposition 6.1. By computing the radius of rotation r0 as
a function of τ, we find that r0 → 0 as τ → τh,small from above. In other words, the rotating spot solution bifurcates
from a stationary spot as a result of a Hopf bifurcation. This is illustrated in Figure 4. We conclude with numerical
experiments demonstrating even more complex spike motion (see Figure 5).

2. EQUILIBRIUM SOLUTION

We start by reviewing the construction of the equilibrium solution to (1.1) using the method of matched asymptotic
expansions as was previously done in [13]. At the equilibrium, the steady state satisfies

0 = ε2∆v − v + uv2, 0 = ∆u+A− uv2

ε2
(2.5)
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with Neumann boundary conditions on Ω. We assume that Ω is a unit disk with the spike located at the center.
Near the core of the spike, we rescale:

v(x) = V (y), u(x) = U(y) , y = ε−1x (2.6)

Then (2.5) becomes

∆yV − V + UV 2 = 0, ∆yU +Aε2 − UV 2 = 0, y ∈ R2.

where ∆y denotes the Laplacian in y. We expand

U = U0 + ε2U1 + · · · , V = V0 + ε2V1 + · · · .

To leading order, we look for a radially symmetric solution given by V0 = V0(ρ) and U0 = U0(ρ), with ρ = |y|. It
satisfies the following coupled nonlinear radially symmetric “core problem”,

∆ρV0 − V0 + U0V
2
0 = 0, ∆ρU0 − U0V

2
0 = 0, 0 < ρ <∞ (2.7a)

V0 → 0, U0 ∼ S log ρ+ χ(S) as ρ→∞. (2.7b)

The core problem (2.7), was first identified in one dimension in [5]. It is closely related to the phenomenon of
self-replicating spots [10, 13, 16].

To determine the source strength S, we integrate the second equation in (2.5) to obtain

Aπ =

∫
Ω

uv2

ε2
dx ∼

∫
R2

U0V
2
0 dy.

On the other hand integrating the second equation in (2.7a) and using the divergence theorem, we obtain

2πS =

∫
R2

U0V
2
0 dy

so that

S =
A

2
. (2.8)

In general, the solution to (2.7a) as well as the function χ(S) in (2.7b) must be computed numerically. This was
done for example in [10, 13, 16]. Figure 2(b) shows the function χ(S). However for small S, equations (2.7a) become
weakly coupled since U0 becomes nearly constant and we may estimate the solution to (2.7a) as follows. Assume
that S � 1 and U0(y) ∼ U0 is constant to leading order in S. Then V0, U0 satisfy at leading order,

V0 (y) = w (y)σ; U0(y) = 1/σ (2.9)

where w is the unique positive ground-state solution to

∆w − w + w2 = 0; w → 0 as |y| → ∞; (2.10)

and

2πS ∼ σ
∫
w2dy; χ(S) ∼ 1

σ
.

This yields an asymptotic expression

A ∼ 2σ

∫ ∞
0

w2(ρ)ρdρ, S ∼ σ
∫ ∞

0

w2(ρ)ρdρ, χ(S) ∼ 1

σ
. (2.11)

The resulting integral is evaluated numerically (see Appendix B). We summarize this construction as follows.
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FIG. 3. (a) Core problem V0, U0) and its asymptotics (Proposition 2.1). Good comparison between numerics and asymptotics
(2.9) is observed even for relatively “large” A = 2. (b) A versus χ. Asymptotics denote the regime A � O(1) given by
χ ≈ 9.868/A.

Proposition 2.1 In the limit 0 < ε� 1, the leading order steady-state solution to (2.5) near the origin satisfies

v(x) ∼ V0(y), u(x) ∼ U0(y) , y = ε−1x (2.12)

where V0, U0 satisfy core problem (2.7) and where the constant S is given by (2.8). In the regime 0 < A� O(1), we
have the asymptotics

V0(x) ∼ σw(y), y = εx (2.13a)

U0(x) ∼ 1

σ
(2.13b)

where w (y) is the unique ground state given by (2.10) and where

σ =
1

2
∫∞

0
w2ρdρ

A ≈ A

9.868
� 1. (2.13c)

Figure 2(b) shows the graph of S versus χ(S), as well as its asymptotic approximation. While the asymptotics are
formally valid in the regime A� 1, they agree well with full numerics even when A is relatively large. For example
when A = 2, full numerics yield χ ≈ 5.103 whereas formula (2.11) yields σ ≈ 0.2026, χ ≈ 4.934, for a relative error
of only 3%. Note also that this error is independent of ε to leading order. Figure 2(a) gives a comparison between
V0(x) and σw(y) with A = 2. Excellent agreement is observed. This is in part because the effective small parameter
is σ ≈ 0.2� 1 when A = 2.

3. STABILITY: LARGE (MODE ZERO) EIGNEVALUE

Having constructed the steady state, we now consider its stability. Linearizing around the steady state in (1.1) we
write.

u(x, t) = v(r) + eλtφ(x), u(x, t) = u(r) + eλtψ(x)

The linearized system of (1.1) then becomes:
λφ = ε2∆φ− φ+ v2ψ + 2uvφ

τλψ = ∆ψ − 1
ε2

(
v2ψ + 2uvφ

) x ∈ Ω

∂nφ = 0 = ∂nψ x ∈ ∂Ω

(3.14)

In the inner region, we expand

φ = eimθ
(
Φ0(ρ) + ε2Φ1(ρ) + · · ·

)
ψ = eimθ

(
Ψ0(ρ) + ε2Ψ1(ρ) + · · ·

)
ρ = |y| y = ε−1x (3.15)
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where y = ρ(cos θ, sin θ). Substituting (3.15) into (3.14), then to leading order we obtain the following radially
symmetric eigenvalue problem:

λΦ0 = ∆mΦ0 − Φ0 + V 2
0 Ψ0 + 2U0V0Φ0

0 = ∆mΨ0 −
(
V 2

0 Ψ0 + 2U0V0Φ0

) (3.16)

Here ∆mΦ0 ≡ ∂ρρΦ0 + ρ−1∂ρΦ0 −m2ρ−2Φ0. and U0, V0 are solutions to (2.7).
Because of the decay term in the equation for Φ0, we assume that Φ0 decays exponentially for large |y|. On the

other hand, the appropriate far-field boundary condition for Ψ0 depends on whether m = 0 or m = 1.
We begin by considering the mode m = 0. In this case the far-field conditions for Ψ0 exhibits logarithmic growth,

Ψ0 ∼ C log |y|+B, |y| � 1. We can scale the eigenfunction to set C = 1, so that Ψ0 then satisfies

Ψ0 ∼ ln |y|+B, |y| � 1. (3.17)

By integrating over the equation for Ψ0 and using the Divergence theorem, this scaling is equivalent to∫
R2

(
V 2

0 Ψ0 + 2U0V0Φ0

)
= 2π. (3.18)

The constant B is determined by matching to the outer region. Since v is assumed to decay away from the spike,
using (3.18) we have ∫

Ω

1

ε2

(
v2ψ + 2uvφ

)
dx ∼ 2π

and the outer problem for ψ is

λτψ = ∆ψ − 2πδ(x) inside Ω; ∂nψ = 0 on ∂Ω (3.19)

whose solution is given by

ψ(x) ∼
K ′0

(√
τλ
)

I ′0

(√
τλ
) I0 (√τλr)−K0

(√
τλr

)
, r = |x| . (3.20)

Expanding for small r we have

ψ(x) ∼ log(r) +
K ′0(
√
τλ)

I ′0(
√
τλ)

− log(2) + γ + log(
√
λτ) as r → 0

∼ log(|y|) +
K ′0(
√
τλ)

I ′0(
√
τλ)

+ log

(
eγ

2

√
ε2λτ

)
. (3.21)

Note that the above expansion assumes that
√
τλε � 1. This will be shown to be self-consistent later on. Then

matching (3.17) and (3.21), yields

B =
K ′0(
√
τλ)

I ′0(
√
τλ)

+ log

(
eγ

2

√
ε2λτ

)
. (3.22)

Together with (3.16), this provides a closed-system which determines the eigenvalue λ. We summarize this construc-
tion:

Proposition 3.1 In the limit ε → 0, the mode-zero eigenvalue λ of the lineraized problem (3.14) is asymptotic to
the eigenvalue problem (3.16) with m = 0 subject to the outer condition (3.17) where B is given by (3.22), as long

as
√
τλε� 1.

We now concentrate on the weakly-coupled regime to A� 1 given by (2.13c). Substitute the steady-state expansion
(2.13) into (3.16) to obtain to leading order

λΦ0 = ∆0Φ0 − Φ0 + 2wΦ0 + w2σ2Ψ0

0 = ∆0Ψ0 −
(
w2σ2Ψ0 + 2wΦ0

)
.

(3.23)
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Rescale Φ0 = σ2Φ̂0 and drop the hat to obtain

λΦ0 = ∆0Φ0 − Φ0 + 2wΦ0 + w2Ψ0

0 = ∆0Ψ0 − σ2
(
w2Ψ0 + 2wΦ0

)
.

(3.24)

whereas (3.18) becomes ∫
R2

(
w2Ψ0 + 2wΦ0

)
dy = 2πσ−2. (3.25)

In addition, we will assume à-priori that |τλ| � 1 (this self-consistency of this assumption will be verified at

the end). Under this assumption, using the large-argument expansion of the Bessel functions, the term
K′0(
√
τλ)

I′0(
√
τλ)

is

exponentially small so that

B ∼ log

(
eγ

2

√
ε2λτ

)
.

Furthermore suppose B � 1. Then we may estimate Ψ0 by a constant,

Ψ0 ∼ log

(
eγ

2

√
ε2λτ

)
.

We further rescale Φ0(y) = −Ψ0Φ(y) which leads to the reduced problem

(L0 − λ)Φ = w2; (3.26a)

−2

∫
wΦ +

∫
w2dx =

2πσ−2

log
(
eγ

2

√
ε2λτ

) . (3.26b)

where the operator L0 is defined by

L0Φ := ∆0Φ− Φ + 2wΦ. (3.27)

One of the key properties of the operator L0 is that

L0w = w2

as can be readily verified using (2.10). This suggests that we seek a Hopf bifurcation point of (3.26) assuming λ is
small. We therefore expand in λ

Φ = w + λΦ1, λ� 1 (3.28)

to obtain

Φ1 = L−1
0 (w).

Define

τ0 :=

(
eγ

2

)−2

ε2τ (3.29)

and assume that λ is purely imaginary,

λ = iλI ; λI � 1.

Then (3.26) becomes

−2λI i

∫
wL−1

0 (w)dy −
∫
w2dy =

2πσ−2

log
(√
iλIτ0

) . (3.30)
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Using the identity

L−1
0 w = w +

1

2
y · ∇w = w +

1

2
ρw′(ρ)

and integrating by parts, we obtain

2

∫
wL−1

0 (w)dy =

∫
w2dy (3.31)

so that (3.30) becomes

log
(√

iλIτ0

)
=
−2πσ−2∫
w2dy

1

λI i+ 1
=

2
∫
w2dy

A2π

(
iλI − 1

λ2
I + 1

)
. (3.32)

Equating real and imaginary parts we obtain
1
2 log (λIτ0) =

2
∫
w2dy

A2π

−1

λ2
I + 1

π
4 =

2
∫
w2dy

A2π

λI
λ2
I + 1

(3.33)

These equations yields, to leading order in A� 1,
λI ∼

π2A2

8
∫
w2dy

τ0 = exp

(
−4
∫
w2dy

A2π

)
8
∫
w2dy

π2A2

, A� 1 (3.34)

Using (3.29) we finally obtain the critical value of τ = τh at the Hopf bifurcation point for large eigenvalue:

τh =
1

A2ε2
exp

(
−4
∫
w2dy

A2π

)
2e2γ

∫
w2dy

π2
.

We made three assumptions in this derivation: (i) λτ � 1; (ii) ε2τλ� 1 and (iii) λ� 1. Assumptions (ii) and (iii) are

satisfied since A � 1 (see (3.34), (3.29)). On the other hand, assumption (i) is equivalent to exp
(
−4

∫
w2dy

A2π

)
� ε2,

or A2 � O
(

1
log ε−1

)
. In summary, we have:

Proposition 3.2 Suppose that

1

log 1/ε
� A2 � 1.

Then the spike solution from Proposition 2.1 undergoes a Hopf bifurcation as τ is increased past τ = τh,large where

τh,large ∼
1

A2ε2
a0 exp

(
−a1

A2

)
(3.35)

and

a0 =
4e2γ

∫∞
0
w2(ρ)ρdρ

π
≈ 19.929, a1 = 8

∫ ∞
0

w2(ρ)ρdρ ≈ 39.474.

4. SMALL EIGENVALUES

We study the Hopf bifurcation in the small eigenvalue problem corresponding to the mode m = 1 in (3.16). A
posteriori analysis reveals that the relevant scaling is

λ = λ0ε
2 τ = τ0ε

−2
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where λ0 and τ0 are O(1) with respect to ε. The leading order eigenvalue problem is

0 = Φ′′0 +
1

ρ
Φ′0 −

1

ρ2
Φ0 − Φ0 + V 2

0 Ψ0 + 2U0V0Φ0 (4.36a)

0 = Ψ′′0 +
1

ρ
Ψ′0 −

1

ρ2
Ψ0 −

(
V 2

0 Ψ0 + 2U0V0Φ0

)
(4.36b)

where ρ = |y| = |x| /ε. The solution to (4.36) is given by:

Φ0 =
C

S
V0ρ Ψ0 =

C

S
U0ρ. (4.37)

and satisfies the far field condition given by

Φ0 → 0, Ψ0 ∼
C

ρ
, as ρ→∞. (4.38)

The constant C will be obtained through matching to the outer solution. The outer problem for ψ is

τ0λψ = ∆ψ, r 6= 0

subject to
∂ψ

∂r
(1) = 0 and ψ ∼ Cεeiθ

r
as r → 0. This yields an explicit solution

ψ = Cε
√
τ0λ0

(
−K

′
1(
√
τ0λ0)

I ′1(
√
τ0λ0)

I1(
√
τ0λ0r) +K1(

√
τ0λ0r)

)
eiθ. (4.39)

Recall the small-argument expansion for K1 and I1 is given by

K1(z) ∼ 1

z
+

1

2
z (log z + b0) +O(z2 ln z), where b0 = γ − 1

2
− ln 2. (4.40a)

I1(z) ∼ 1

2
z +O(z3) (4.40b)

Writing (4.39) in inner variables r = ρε and using expansions (4.40) we then obtain

ψ ∼
(
C

ρ
+ ε2 1

2
Cτ0λ0ρ

{
log
(√

τ0λ0ρε
)
− K ′1(

√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

})
eiθ

∼ eiθ (Ψ0(ρ) + εΨ1(ρ))

The O(1) terms yields the far-field behaviour for Ψ(ρ) given by (4.38). The O(ε2) terms yield the far-field behaviour
for Ψ1(ρ),

Ψ1 ∼
1

2
Cτ0λ0ρ

{
log ρ+ log

(√
τ0λ0ε

)
− K ′1(

√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

}
, ρ� 1. (4.41)

To determine λ0 requires an expansion at the next order. The steady state satisfies

∆V1 − V1 + 2U0V0V1 + U1V
2
0 = 0, (4.42a)

∆U1 +A− U1V
2
0 − 2U0V0V1 = 0, (4.42b)

and the corresponding eigenvalue problem is

λ0Φ0 = ∆1Φ1 − Φ1 + V 2
0 Ψ1 + 2U0V0Φ1 + 2(V0U1 + U0V1)Φ0 + 2V0V1Ψ0 (4.43a)

τ0λ0Ψ0 = ∆1Ψ1 −
(
V 2

0 Ψ1 + 2U0V0Φ1

)
− 2(V0U1 + U0V1)Φ0 − 2V0V1Ψ0 (4.43b)

subject to the far field condition (4.41).
We express (4.43) in matrix form as

∆1W +MW = Ef1 + f2 , 0 < ρ <∞ (4.44a)

W ∼

(
0,

C1ρ ln |ρ|+ C2ρ

)
, as ρ→∞ (4.44b)
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where:

M =

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, E =

(
−2(U0V1 + U1V0) −2V0V1

2(U0V1 + U1V0) 2V0V1

)
, (4.44c)

W =

(
Φ1

Ψ1

)
, f1 =

(
Φ0

Ψ0

)
, f2 =

(
λ0Φ0

τ0λ0Ψ0

)
, (4.44d)

C1 =
1

2
Cτ0λ0, C2 =

1

2
Cτ0λ0

{
log
(√

τ0λ0ε
)
− K ′1(

√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

}
. (4.44e)

Let P be the solution of the adjoint problem,

∆1P +M tP = 0 (4.45a)

subjected to the far-field behaviour condition

P ∼

(
0
1
ρ

)
for ρ� 1. (4.45b)

We multiply (4.44a) by ρPt and integrate to obtain∫ R

0

Pt (∆1W +M ·W) ρdρ =

∫ R

0

Pt · (Ef1 + f2) ρdρ. (4.46)

Here, R is a big number which we will take to infinity later. Integrating by parts, the left hand side becomes∫ R

0

Pt (∆1W +M ·W) ρdρ =

(
Pt ·

(
ρ
∂W

∂ρ

)
−
(
ρ
∂Pt

∂ρ

)
·W

)
ρ=R

(4.47)

= (2C1 lnR+ 2C2 + C1) (4.48)

To calculate the right hand side of (4.46), we introduce N =
(
∂V1

∂ρ ,
∂U1

∂ρ

)t
. Upon differentiating the system for V1

and U1 with respect to ρ, we obtain

∆1N +M ·N =

(
−2(U0V0)ρV1 − (V 2

0 )ρU1

2(U0V0)ρV1 + (V 2
0 )ρU1

)
.

The key observation is that

Ef1 =
C

S

(
−2(U0V0)ρV1 − (V 2

0 )ρU1

2(U0V0)ρV1 + (V 2
0 )ρU1

)
=
C

S
(∆1N +M ·N)

It follows that ∫ R

0

Pt · (E · f1) ρdρ =
C

S

∫ R

0

Pt · (∆1N +M ·N) ρdρ

=
C

S

(
Pt ·

(
ρ
∂N

∂ρ

)
−
(
ρ
∂Pt

∂ρ

)
·N
)∣∣∣∣

ρ=R

= −2C.

Next we simplify ∫ R

0

Pt · f2ρdρ =

∫ R

0

(P1Φ0 + τ0P2Ψ0)λ0ρdρ

and we further compute∫ R

0

τ0P2Ψ0λ0ρdρ =
C

S
τ0P2U0λ0ρ

∣∣∣∣R
0

− C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ

=
C

S
τ0λ0 (S log(R) + χ(S))− C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ.
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In summary, we obtain that the right hand side of (4.46) simplifies to∫ R

0

Pt · (Ef1 + f2) ρdρ = λ0

∫ R

0

P1Φ0ρdρ+ Cτ0λ0 log(R) +
Cτ0λ0

S
χ(S)− C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ− 2C. (4.49)

Equating (4.48) and (4.49), note that the logR terms cancel each other out and after factoring out C, and we finally
obtain

λ0

∫ R

0

P1
1

S
V0ρρdρ+

τ0λ0

S
χ(S)−

∫ R

0

τ0(P2ρ)ρU0λ0dρ− 2 = τ0λ0

(
log

(√
τ0λ0ε

2

)
− K ′1(

√
τ0λ0)

I ′1(
√
τ0λ0)

+ γ

)
or

λ0κ1 − τ0λ0κ2

S
= τ0λ0

(
log

(
eγ

2

√
τ0λ0ε

)
− K ′1(

√
τ0λ0)

I ′1(
√
τ0λ0)

)
+ 2 (4.50a)

where κ1 and κ2 are given by

κ1 :=

∫ ∞
0

P1V0ρρdρ, κ2 :=

∫ ∞
0

(P2ρ)ρ [U0 − χ(S)] dρ. (4.50b)

Next, we seek a Hopf bifurcation for (4.50). Setting λ0 = iλI in (4.50a) and equating real and imaginary parts
yields τ0λI = ωc where ωc satisfies

ωc Im

(
log
(√
iωc
)
− K ′1(

√
iωc)

I ′1(
√
iωc)

)
− 2 = 0 (4.51a)

and

τ0 =
κ1

S Re
(
−K

′
1(
√
iωc)

I′1(
√
iωc)

+ log
(
eγ

2

√
iωcε

))
+ κ2

(4.51b)

A remarkable fact is that the equation (4.51a) is independent of any parameters. Numerical plotting shows that
there is a unique solution to (4.51a) given by

ωc ≈ 3.02603687. (4.51c)

Expression (4.51b) is further simplifed by rewriting

Re

(
−K

′
1(
√
iωc)

I ′1(
√
iωc)

+ log

(
eγ

2

√
iωcε

))
= α1 + log (ε)

where

α1 := Re

(
−K

′
1(
√
iωc)

I ′1(
√
iωc)

)
+ log

(
eγ

2

√
ωc

)
= −0.14623425. (4.52)

In general, the constants κ1, κ2 must be computed numerically. However asymptotic expansion is available in the
intermediate regime, when A is small, and is given in Appendix A. We summarize.

Proposition 4.1 The translational eigenvalue corrsponding to mode m = 1 of the steady state in Proposition 2.1
undergoes a Hopf bifurcation as τ is increased past τ ∼ τh,small where

τh,small =
1

ε2

κ1

A
2 (log ε+ α1) + κ2

. (4.53)

The constants κi are independent of ε (depend only on A) and are given in (4.50b). The constant α1 = −0.1462342
is a universal constant defined through (4.52). In the asymptotic limit A� 1, the formula (4.53) simplifies to

τh,small =
1

ε2A2

2κ10

log 1
ε − α1 − 2κ20

. (4.54)

where

κ10 ≈ 9.86855; κ20 ≈ 0.1441

whose exact value is derived in Appendix A.

Figure 2 shows a very good agreement between the full numerical simulations of the eigenvalue problem (3.14) and
formula (4.54).
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5. THRESHOLD CROSSING

As Figure 2 shows, the Hopf curves τh,large and τh,small intersect as A is increased at some critical value A = Ac.
Having computed asymptotically the Hopf bifurcations for both small and large eignevalues, we are finally in position
to determine this crossing by equating τh,large = τh,small (where τh,large and τh,small are given in Propositions 3.2
and 4.1, respectively). Solving for A yields

Ac ∼
c1[

ln
(
c2 ln 1

ε + c3
)]1/2 (5.55)

where

c1 = a
1/2
1 ≈ 6.2828;

c2 =
e2γ

π
≈ 1.00975,

c3 =
(−α1 − 2κ20) a0

2κ10
≈ −0.14334.

From the formulas for τh,large and τh,small, it is clear that if A < Ac, the height oscillations are triggered before
position oscillations, whereas the opposite is true if A > Ac. This is the main result of the paper. We summarize.

Proposition 5.1 Let Ac as given in (1.3) with ε� 1. Suppose that A < Ac. Then height oscillations are triggered
before the position oscillations as τ is increased just past τh,large. Suppose that A > Ac. Then position oscillations
are triggered before height oscillations as τ is increased just past τh,small.

Note that the derivation required that O
(

1
log 1

ε

)
� A2 � O (1) . Both of these conditions are clearly satisfied in

the critical regime A2 = O(A2
c) = O

(
1

log(log 1
ε )

)
.

Although in theory, the formula for Ac is is valid as ε→ 0, the log-log scaling has a horrible convergence rate. It
is then all the more surprising that the formula (1.3) is able to predict the threshold within a reasonable accuracy,
even when ε = 0.02. To further validate this result, we computed Ac numerically up to ε = O(10−3). The result is
summarized in the table in Figure 2. Attempting to compute at such small ε values required the use of a non-uniform
grid to compute eigenvalues numerically. We then used a numerical root solver and continuation to adjust A until
τh,large = τh,small. We validated our computations by doubling the number of meshpoints. The prediction given by
(1.3) is increasingly accurate with each halfing of ε, although as expected from a log-log scaling, the improvement in
accuracy is very slow.

6. ROTATING SPOT

When the spike is destabilized via translational instabilities, it starts to move as illustrated in figure 1, and may
eventually settling into a circular orbit, rotating with some frequency ω0 around some radius r0. The goal of this
section is to compute ω0 and r0 asymptotically. Before proceeding, it is convenient to rescale

τ =
τ0
ε2
, s = ε2t,

so that the problem (1.1) becomes

ε2vs = ε2∆v − v + v2u, τ0us = ∆u+A− v2u

ε2
. (6.56)

Let x0(s) be the location of the spot. To make further progress, we make the anzatz that the spot travels along a
circle of radius r0 with constant angular velocity ω0, so that both u and v undergo a rigid rotation. That is, we
assume

x0(s) = eiω0sr0 (6.57)

and u(x, s) = u(xe−iω0s), v(x, s) = v(xe−iω0s). We will estimate inner and outer region and perform matching in
order to obtain a solvability condition which will determine the radius and the angular velocity of the spot.
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FIG. 4. Radius of rotating spot as a function of τ0 = τε2. Parameter values are A = 8 and ε = 0.02. Dashed line is
the asymptotic theory given by Proposition 6.1. Circle is the average long-time radius as observed from direct numerical
simulations. Inserts show the long-time spike trajectory for τ0 as indicated (with numerical trajectory shown in solid line and
the theoretical rotating-spot trajectory of radius r0 shown in dashed line).

Outer region. Away from spike location, we estimate the outer problem for u by

∆u+A = 2πSδ(x− x0) + τ0us (6.58)

with Neumann boundary condition ∂nu = 0, x ∈ ∂Ω. Here, S is defined by

2πS =

∫
uv2

ε2
dx ∼

∫
R2

UV 2dy, y =
x− x0(s)

ε

The relation between S and A is determined by integrating (6.58) to obtain

πA = 2πS + τ0
d

ds

(∫
Ω

udx

)
. (6.59)

But since we assumed that u is rigidly rotating, the integral term
∫

Ω
udx is independent of time s so that – just as

for stationary spot – (6.59) simplifies to

S =
A

2
. (6.60)

We write u as

u(x, s) = 2SG(x, s) + C

where G satisfies {
∆G+ 1 = πδ(x− x0(s)) + τ0Gs
∂nG = 0, x ∈ ∂Ω;

∫
Gdx = 0

; x0(s) = eiω0sr0, (6.61)
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and C is some (irrelevant for dynamics) constant. We now show that to leading order, (6.61) has the following
singularity structure

G(x) =
1

2
log |x− x0|+

τ0
4
ẋ0 · (x− x0) log |x− x0|+R0(x, x0). (6.62)

where R0 is the “regular part”, in the sense that its gradient exists at x = x0; we give explicit expression for R0 in
appendix C. Note that when τ0 = 0, this corresponds to the usual Modified Green’s function on a disk; however the
non-zero τ0 induces an an additional singularity term ẋ0 · (x− x0) log |x− x0|. This latter term is “singular” in the
sense that its gradient is infinite as x→ x0 and therefore needs to be “peeled off”.

To see where this singularity comes from, first consider the source that moves along y-axis, with some speed c,
x0(s) = (0, cs) on all of space; the free-space moving source Green’s function then satisfies

∆G = τ0Gs + πδ(x− x0(s)); x ∈ R2 and x0(s) = (0, cs) (6.63)

In this case, transforming into co-moving coordinates x = (ξ, η) + (0, cs) yields

Gξξ +Gηη + cτ0Gη = πδ(ξ)δ(η).

This problem has an exact solution of the form

G(ξ, η) = −1

2
e
−cτ0

2 ηK0(
cτ0
2
r), r =

√
ξ2 + η2. (6.64)

We then expand for small r and y using Taylor expansions K0(z) ∼ − log z, ec/2η ∼ 1 + cτ0
2 η which yields

G (ξ, η) ∼ 1

2

(
1− cτ0

2
η
)

log r + . . . (6.65)

This also explains the choice of the constant −1
2 in (6.64) which gives the correct leading order behaviour G ∼ 1

2 log r
independent of cτ0. Replacing cη by ẋ0 · (x− x0) and r by |x− x0| indeed yields the singularity structure (6.62).
Further expanding x near x0, the outer problem for u(x) is then given by

u(x) ∼ S log |x− x0| −
τ0S

2
ẋ0 · (x− x0) log |x− x0|+ 2S (x− x0) · ∇R0 + C, x→ x0. (6.66)

where ∇R0 = ∇xR0(x, x0)|x=x0
and C is some constant.

Inner region. In the inner region near the spot, we rescale

y =
x− x0(s)

ε
; v(x, t) = V (y) u(x, t) = U(y).

Then V,U satisfies {
−ε∇yV dx0

ds = ∆yV − V + UV 2

−τ0ε∇yU dx0

ds = ∆yU +Aε2 − UV 2
(6.67)

We then expand in ε,

U = U0 + εU1 + · · · , V = V0 + εV1 + · · · . (6.68)

At the leading order we have {
∆V0 − V0 + U0V

2
0 = 0

∆U0 − U0V
2
0 = 0

. (6.69)

At the next order we obtain {
∆V1 − V1 + 2U0V0V1 + V 2

0 U1 = −∇V0 · ẋ0

∆U1 − 2U0V0V1 − V 2
0 U1 = −τ0∇U0 · ẋ0

(6.70)

We assume that V0, V1 decays exponentially in the far field |y| � 1. To obtain the far-field behaviour for U0 and U1,
we rewrite the outer expansion (6.66) in the inner variables. This yields

u(x) = S log ε|y|+ τ0S

2
ẋ0 · yε log ε|y|+ 2S∇R0 · yε+ C. (6.71)
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Upon collecting like terms in ε (while treating log ε as an O(1) constant with respect to ε), we obtain

U0 ∼ S log |y|+ χ(S), |y| � 1; (6.72)

The function χ(S) is the same as in (2.7) and the constant C in (6.71) determined through the relationship χ(S) =
S log ε+ C.

At the next order we obtain

U1 ∼
τ0S

2
ẋ0 · y log |y|+

(
2S∇R0 −

τ0S

2
ẋ0 log ε

)
· y, |y| � 1.

Following the derivation in §4, we rewrite the system (6.70) as

∆W +M ·W = f , y ∈ R2 (6.73a)

W ∼ (0,−Sτ0
2
ẋ0 · y ln |y|+

−→
b · y)t, as |y| → ∞ (6.73b)

where

−→
b =

τ0S

2
ẋ0 log ε+ 2S∇R0, (6.73c)

M =

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, W =

(
V1

U1

)
, f =

(
−∇yV0 · ẋ0

−τ0∇yU0 · ẋ0

)
. (6.73d)

As in §4, to formulate the solvability condition, we let P (ρ) = (P1(ρ), P2(ρ))t be the solution to the homogeneous
adjoint problem associated with (4.44a), given by (4.45). Define

Pc = P (ρ) cos θ, Ps = P (ρ) sin θ (6.74)

where cos θ = y1
|y| and sin θ = y2

|y| ; note that Pc and Ps both satisfy ∆P +M tP = 0.

Multiply (6.73a) by P tc and integrate by parts over a ball of large radius R to obtian the solvablity condition∫
BR

P tc · fdy =

∫
∂BR

P tc · ∂ρW −W · ∂ρP tcdy. (6.75)

The left hand side of (6.75) simplifies to∫
BR

P tc · fdy = −π
∫ R

0

(P1V0ρ + τ0P2U0ρ) ẋ01ρdρ (6.76)

∼ −πẋ01π (κ1 + τ0S logR− τ0κ2) (6.77)

where κ1, κ2 are defined in (4.50b).
The right and side of (6.75) simplifies to∫

∂BR

P tc · ∂ρW −W · ∂ρP tcdy = π

(
−Sτ0ẋ01

[
1

2
+ lnR

]
+ 2b1

)
(6.78)

where b1 is the first component of vector b in (6.73c). Equating (6.77) and (6.78), note that the logR terms cancel
each other out and we finally obtain

− (κ1 − τ0κ2) ẋ01 = −S
2
τ0ẋ01 + 2b1.

The second solvability condition involving ẋ01 is obtained similarly by using Ps instead of Pc. The two solvability
conditions together yield

− (κ1 − τ0κ2) ẋ0 = −S
2
τ0ẋ0 + 2

(
2S∇R0 −

τ0S

2
ẋ0 log ε

)
. (6.79)
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FIG. 5. Complex spot trajectories. Left the domain is a unit disk. Right: the domain is a square of area π.

Solving for ẋ0 and using S = A/2 then yields

d

ds
x0 = β∇R0 where β =

1

τ0
(

1
4 log ε+ 1

8 + κ2

2A

)
− κ1

2A

(6.80)

In Appendix C we derive an exact expansion for R0 in terms of an infinite series of Bessel functions. By symmetry,
we may assume without loss of generality that x0 lies on the positive x-axis (i.e. s = 0). Then d

dsx0|s=0 = (0, ω0r0)
and we write:

∇R0 (x, x0)|x0=(r0,0), x=x0
= (F1(r0, ω), F2(r0, ω)) , where ω = ω0τ0, (6.81)

with F1, F2 given in (C.7). Equation (6.81) is then equivalent to F1 = 0, ω0r0 = F2, or

F1(r0, ω) = 0; τ0 =
2κ1

A

(
log ε+ 1

2 −
4F2(r0, ω)

ωr0

)
+ κ2

; ω0 = ω/τ0. (6.82)

In addition, as we show in Appendix C, the threshold τh,small of Proposition 4.1 is recovered in the limit r0 → 0.
We summarize our construction as follows.

Proposition 6.1 The Schnakenberg model (1.1) on a unit disk admits a rotating spot solution for τ > τh,small, where
τh,small is the Hopf bifurcation value with respect to translational eigenvalues as given in Proposition 4.1. The spot

center x0 = r0e
iω0ε

2t rotates with angular velocity ω0ε
2 and radius r0. as determined through (6.82).

Figure 4 shows a comparison between the numerical simulations of the full system (1.1) and the asymptotic
prediction for the radius of the rotating spot. For example take τ0 = 0.15, A = 8, ε = 0.02. Then using (4.50b) we
first compute κ1 = −1.2938 and κ2 = 3.54334 by solving the radial core problem and the adjoint eigenvalue problem
using a boundary value problem solver in Matlab (bvp4c). From (6.82) we then obtain r0 = 0.669 and ω = 6.1994.
Full numerical simulations of the original model (1.1) exhibit a rotating spot whose radius is r0,numeric ≈ 0.57,
in good agreement with the theoretical prediction. Although the Proposition 6.1 applies for any τ > τh,small, the
rotating spot solution is not always stable as Figure 4 shows. For example when τ0 = 0.11, the numerical solution
appears to be in the shape of an ellipse whereas for τ0 = 0.18 the radius is close to the theoretical prediction but
appears to vary with time, generating an annular region. More complex trajectories are possible as shown in Figure
5.

7. DISCUSSION

We have used formal asymptotics to compute Hopf bifurcation thresholds τ = τh,large and τ = τh,small that induce
spike oscillations in either height (τh,large) or position (τh,small) for the Schankenberg model. These two thresholds
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cross at A = Ac. That is, height oscillations dominate (τh,large < τh,small) when A < Ac whereas position oscillations
dominate (τh,small < τh,large) when A > Ac, where Ac given by (1.3) has an O(1/ log(log ε)) scaling. Despite the
extremely slow decay of Ac as ε→ 0, the asymptotically computed value of Ac agrees surprisingly well with numerics
even with ε = 0.01 (the constants in (1.3) are very important to get a good agreement). We remark that in one
dimension, a similar “double-hopf” point was found in several papers [7–9]. However it has an algebraic scaling
Ac = O(ε1/6) ([8]).

In the regime τh,small < τ < τh,large, we have consturcted a periodic spike solution consisting of a rotating spot
inside a unit disk, and computed the radius and speed of the rotation by expanding the underlying Green’s function
in terms of complex Bessel series. Numerical experiments suggest that the rotating solution is not always stable –
see Figure 4. In particular, for τ just slightly above the bifurcation point τh,small, the spike trajectory is an ellipse,
whereas for τ sufficiently large, the spot path fills out an annulus. It would be a very interesting to study the stability
of these rotating spots.

It would be interesting to study more general spot motion and for more general domains. Figure 5 gives some idea
of possible trajectories. A preliminary goal is to derive and numerically simulate the reduced equations of motion.
The reduced equations of motion comprise a coupled PDE-ODE system with a moving source, analogous to the
equations derived in §6. The numerical difficulty is the ODE for the source location requires an extraction of a very
weakly singular part of the moving Green’s function.

Circular spot motion is intimately related to the model of a small rotating trap inside an insulated unit disk, which
was recently studied in [26, 27]. There, the main goal was to minimize the mean first passage time (MFPT) for
a rotating trap x0 = r0e

ωt (or several rotating traps) as a function of its radius r0 and its angular velocity ω. It
turned out that the optimal radius r0 and velocity ω have precisely the same relation F1(r0, ω) = 0 as we found in
Proposition 6.1. As a result, for small angular velocity (ω < ωc), it was optimal for the trap to be located at the
origin, whereas for ω > ωc it was better for the spot to move. This is the precise analogue of the Hopf bifurcation
computed in Proposition 4.1.

Spot motion was also observed for a three-component gas-discharge system [28]. There, the authors also analysed
complex spot dynamics, including spot collision and splitting. The initial instability inducing spot motion in this
system was further analysed in detail in [29] where theoretical and numerical study of the bifurcation from a stationary
to a moving spot was performed. Let us also mention the work [30] where complex motion of a self-propelled
deformable particle was studied.

While in many aspects, GM, GS and Schakengerg models are very similar mathematically, the oscillations of spot
positions have never been observed in GM model. It would be interesting to have a better understanding of the kind
of general conditions that are needed to observe position oscillations.

Appendix A: Estimating κ1, κ2 for small A.

In this appendix we compute the asymptotic expansion for κ1, κ2 given by (4.50b) for small A. In this limit, we
recall from (2.9) that U0 ∼ χ = σ−1 and V0 ∼ σw where σ = A

2
∫∞
0
w2ρdρ

. The adjoint problem (4.45) simplifies to(
∂ρρ + ρ−1∂ρ − ρ−2

)
P1 − P1 + 2wP1 − 2wP2 ∼ 0, 0 < ρ <∞, P1 ∼ 0 as ρ→∞ (A.1a)

(
∂ρρ + ρ−1∂ρ − ρ−2

)
P2 + σ2w2(P1 − P2) ∼ 0, 0 < ρ <∞, P2 ∼ ρ−1, as ρ→∞. (A.1b)

The solution to this limiting system is given by

P1 = σ−2

(
− 3wρ∫∞

0
w3sds

+O(σ2)

)
, P2 =

1

ρ

∫ ρ
0
w3sds∫∞

0
w3sds

+O(σ2) (A.2)

and we then obtain

κ1 ∼
−3
∫∞

0
w2
ρρdρ∫∞

0
w3ρdρ

σ−1, κ2 ∼
1∫∞

0
w3ρdρ

∫ ∞
0

[U0 − σ−1]w3ρdρ. (A.3)

To compute κ2 further, we let U0 − σ−1 = σÛ +O(σ2) where Û satisfies

∆Û = w2

subject to the far-field condition Û ∼ S log ρ+ 0, ρ� 1. The solution to Û is given by

Û (ρ) =

∫ ρ

0

F (s)

s
ds−

∫ ∞
1

F (s)− F (∞)

s
ds−

∫ 1

0

F (s)

s
ds
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where

F (s) =

∫ s

0

w2(ρ)ρdρ;

κ2 is then given by

κ2 ∼ σ
∫∞

0
Ûw3ρdρ∫∞

0
w3ρdρ

.

The integrals
∫∞

0
Ûw3ρdρ is computed numerically. In summary, we obtain the following expansions for κ1, κ2 :

κ1 ∼ −
1

A
κ10; κ2 ∼ Aκ20

where (using (B.4)),

κ10 = 2

∫ ∞
0

w2ρdρ; κ20 =

∫∞
0
Ûw3ρdρ

2
∫∞

0
w2ρdρ

∫∞
0
w3ρdρ

.

The numerical estimates for κ1 and κ2, computed using numerical quadrature, are

κ10 ≈ 9.8686; κ20 ≈ 0.1441.

Appendix B: Some properties of function w

We start from the ground state w(y) = w (ρ) , ρ = |y| . It satisfies

w′′ +
w′

ρ
− w + w2 = 0, w′(0) = 0, w → 0 as ρ→∞ (B.1)

Multipling (B.1) by wρ and w′ρ2 respectively and integrating over the domain yields

−
∫ ∞

0

w2
ρρdρ−

∫ ∞
0

w2ρdρ+

∫ ∞
0

w3ρdρ = 0 (B.2)∫ ∞
0

w2ρdρ− 2

3

∫ ∞
0

w3ρdρ = 0 (B.3)

Combining these two equations leads to∫∞
0
w2
ρρdρ∫∞

0
w3ρdρ

=
1

3
,

∫∞
0
w2ρdρ∫∞

0
w3ρdρ

=
2

3
. (B.4)

Finally, we will use the following numerical estimate:∫ ∞
0

w2ρdρ ≈ 4.9343

It is obtained by solving (B.1) using Matlab’s boundary value problem solver bvp4c, then using numerical quadrature
for the resulting integral.

Appendix C: Green’s function for rotating spot

In this appendix we compute explicitly gradient of the regular part of the rotating Green’s function, defined
through (6.61), (6.62). In the rotating frame, the Green’s function G from (6.61) satisfies

∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2

∂2G

∂θ2
+ ω

∂G

∂θ
= 1− πδ(r − r0)δ(θ) (C.1)

∂rG = 0 x ∈ ∂Ω. (C.2)
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where

ω = τ0ω0. (C.3)

Using separation of variable, we write G(r, θ) as

G = G0(r) +

∞∑
m=1

(
Gm(r)eimθ + c.c

)
(C.4)

where c.c refers to the complex conjugate of the term involving the summation. Substituting (C.4) into (C.1) and
recalling the Newmann boundary condition, we obtain:

∂2G0

∂r2
+

1

r

∂G0

∂r
= 1− πδ(r − r0)δ(θ), G0 bounded as r → 0, G′m(1) = 0 (C.5a)

∂2Gm
∂r2

+
1

r
Gm −

m2

r2
Gm + imωGm = −πδ(r − r0)δ(θ), m > 0, Gm bounded as r → 0, G′m(1) = 0 (C.5b)

For m > 0, the homogeneous solution of (C.5b) may be written as

Gm(r, ω) = amIm(cmr) + bmKm(cmr); cm ≡
√
−iωm

where Im(r) and Km(r) are m-th order modified Bessel functions of the first and second kind, respectively. Solving
(C.5b) separately for r < r0 and r > r0, and applying appropriate continuity and jump conditions at r = r0, we
obtain the solution for Gm,

Gm(r) =


1
2

[
−K

′
m(cm)
I′m(cm) Im(cmr0) +Km(cmr0)

]
Im(cmr), 0 < r < r0

1
2

[
−K

′
m(cm)
I′m(cm) Im(cmr) +Km(cmr)

]
Im(cmr0), r0 < r < 1

, cm ≡
√
−iωm, m 6= 0

where I ′m(cm) and K ′0(cm) denote the derivatives of Im and Km evaluated at cm, respectively. In a similar way, we
find that the solution to (C.5) for G0(r),

G0(r) =
r2

4
+

2r2
0 − 3

8
−

{
1
2 log r0, 0 < r < r0
1
2 log r, r0 < r < 1

.

Recall that

R0 = G− S1 − S2

where

S1 := −1

2
log |x− x0|; S2 :=

1

4
τ0
∂x0

∂t
· (x− x0) log |x− x0|. (C.6)

To calculate R0 and its gradient, we first expand the singular parts S1 and S2 in terms of their Fourier series, then
take the limit θ → 0, r → r−0 . We have

S1 := −1

2
log |x− x0| = −

1

2
log(rM ) +

1

2

∑
m≥1

ρm

2m

(
eimθ + e−imθ

)
, where rM = max (r, r0) , ρ =

min (r, r0)

max (r, r0)
;

1

4
τ0
∂x0

∂t
· (x− x0) = −ωrr0

8

(
ieiθ − ie−iθ

)
;

S2 =
ωrr0

8i

(log(rM ) +
ρ2

4

)
eiθ − 1

2

∑
m≥2

(
1

m− 1
ρ−1 − 1

m+ 1
ρ

)
ρmeimθ

+ c.c.

The function F1 and F2 defined through (6.81) are then expressed in terms of polar variables as

F1(r0, ω) = ∂rR0|r=r−0 , θ=0; F2(r0, ω) =
1

r0
∂θR0|r=r−0 , θ=0
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Differentiating with respect to r and θ and then evaluating at r = r−0 and θ = 0, we finally obtain the following
expressions,

F1(r0, ω) =
r0

2
+
∑
m≥1

(
2 Re

(
G′m(r−0 )

)
− 1

2r0

)
(C.7a)

r0F2(r0, ω) = −ωr
2
0

4

[(
log(r0) +

1

4

)]
− 2 Im

(
G1(r−0 )

)
+
∑
m≥2

(
−2m

(
ImGm(r−0 )

)
+
ωr2

0

4

m

m2 − 1

)
(C.7b)

where

Gm(r−0 ) =
1

2

[
−K

′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]
Im(cmr0); (C.7c)

G′m(r−0 ) =
cm
2

[
−K

′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]
I ′m(cmr0), cm ≡ −i

√
iωm. (C.7d)

The Hopf bifurcation threshold derived in Proposition 4.1 corresponds to letting r0 → 0. To establish the equiv-
alence between the expression for r0 in Proposition 6.1 and the threshold τh,small in Proposition 4.1, we using the
small-argument expansions for Km and Im to obtain the leading-order expressions,

F1(r, ω) =
r0

2
+ 2 Re

(
G′1(r−0 )

)
− 1

2r0
; r0F2(r0, ω) = −2 Im (G1(r0))− ωr2

0

4

[(
log(r0) +

1

4

)]
Further simplifying, we obtain

F1(r0, ω) ∼ r0

4

(
− Im

(
K ′1(
√
−ωi)

I ′1(
√
−ωi)

)
ω + 2− πω

4

)
, r0 � 1

F2(r0, ω) ∼ 1

4
r0ω

(
−Re

(
K ′1(
√
−ωi)

I ′1(
√
−ωi)

)
+

1

2
log (ω/4) + γ − 1

2

)
, r0 � 1

Setting F1 = 0 and letting r0 → 0, we obtain ω = ωc is the root of (4.51a). Then setting F2 = 0 and recalling that
ω = ω0τ0, one recovers Proposition 6.1.
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