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We study the long-time effect of noise on pattern formation for the aggregation model. We
consider aggregation kernels that generate patterns consisting of two delta-concentrations. Without
noise, there is a one-parameter family of admissable equilibria that consists of two concentrations
having whose mass is not necessary equal. We show that when small amount of noise is added, the
heavier concentration “leaks” its mass towards the lighter concentration over a very long time scale,
eventually resulting in the equilibration of the two masses. We use exponentially small asymptotics
to derive the long-time ODE’s that quantify this mass exchange. Our theory is validated using full
numerical simulations of the original model – both of the original stochastic particle system and its
PDE limit. Our formal computations show that adding noise destroys the degeneracy in equilibrium
solution and leads to a unique symmetric steady state.

1. INTRODUCTION

Aggregation is an ubiquitous natural phenomenon that pervades both the animal world and many inanimate
physical systems. In the animal kingdom, group formation is observed across all levels from bacterial colonies
and insect swarms to complex predator-prey interactions in fish, birds and mammals. Aggregation is also present in
physical systems of all scales from the smallest (Bose-Einstein Condensates, DNA buckyball molecules, fluid vortices)
to the largest (galaxies). The emergence of group behaviour is often a consequence of individuals (or atoms) following
very simple rules, without any external coordination.

One of the simplest models that achieves aggregation is the so-called aggregation model, which has been the subject
of intense study in the last two decades; refer to survey papers [1–4] and references therein. Mathematically, this
model may be written as a system of ODE’s for n particles

dxj
dt

=
1

n

n∑
k−1

f(xj − xk) (1.1)

where the pairwise interaction force f(x) is assumed to be the gradient of a radial potential function, f(x) =
−∇P (|x|) = −P ′(|x|) x

|x| . The strength of the force f(xj − xk) depends only on the distance between the two

particles xj and xk, and it acts in the direction between these particles. The system (1.1) corresponds to applying
the method of steepest descent to determine the minimizer of the pairwise-interaction energy,

E =
∑
k,j

P (|xj − xk|).

To get confinement, it is further assumed that the particles repel each other at short distances and attract each
other at longer distances. In many cases this leads to the formation of swarms. The assumption of of long-range
attraction and shirt-range repulsion corresponds to P (r) having a minimum at r > r0 so particles at a distance less
than r0 are attracted to each-other and those at distance bigger than r0 are repelling. These simple assumptions
can give rise to surprisingly complex steady states [5–13] including “soccer balls” in two and three dimensions
[5, 6, 10, 11] as well as steady states concentrating on points, curves and surfaces [10–14]. Of particular importance
for the dimensionality of the steady state is the strength of repulusion near the origin [5, 6, 11]. For this paper, we
focus on the simplest case, where the steady state concentrates on a finite number of points (delta-concentrations),
which can occur when the repulsion is sufficiently weak at the origin.

In this work we are interested in how the noise that is inherently present in most of the physical systems can affect
the resulting steady state. That is, we consider the model (1.1) with noise, so that (1.1) is replaced by stochastic
ODE’s

dxj =
1

n

n∑
k−1

f(xj − xk)dt+ σ
√
dtNj ; (1.2)

here σ
√
dtNj is the standard Weiner process walk with standard deviation σ2; Nj denotes the standard normal

distribution of mean zero and variance 1. In the continuum limit as the number of particles N → ∞, the average
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FIG. 1. Left: Particle simulation of deterministic system (1.1) with f(x) = x. Initial conditions consist of n = 200 particles
equally spaced from each-other. Particles collapse into a single delta-concentration. Middle: Same ODE system but with noise
added (1.2). The delta-concentration is “diffused” into a Gaussian. Left: Particle density distribution from the simulation in
the middle panel, averaged over 100 time-steps with t = 10. The dashed line is the predicted Gaussian profile given by (1.5).

particle density distribution ρ is well approximated by the PDE [3],

ρt +∇ · (vρ) = ε2∆ρ, v =

∫
f (x− y) ρ (y) dy. (1.3)

where ε2 = σ2/2. Equation (1.3) is the starting point for this paper.
The presence of noise can have a profound effect on the steady state, especially if the steady state consists of

point concentrations which can be the case when the repulsion is sufficiently weak at the origin [15] As a motivating
example, consider the simplest case,

f(x) = −x. (1.4)

This corresponds to a pontential P (r) = r2/2 that is purely attactive, and is only weakly attractive at the origin (i.e.
P ′(0) = 0). Figure 1 shows the resulting one-dimensional simulations with and without noise for the discrete system
(1.2), as well as the associated average density in the presence of noise – computed by averaging the steady state
for the last 100 steps of the numerical simulation of (1.2) (for simplicity, we used forward Euler method for these
simulations). Without noise, the particle density collapses to a single point (delta function). On the other hand, the
noise “diffuses” the delta function and the resulting average steady state density is a Gaussian,

ρ(x) =
1√

2πε2
exp

(
− x2

2ε2

)
. (1.5)

as was already observed in [15]. Indeed, the steady state satisfies (vρ)x = ε2ρxx where v(x) =
∫
− (x− y) ρ(y)dy = x,

where we assumed that ρ is even and has total mass M = 1. Integrating once we get the ODE ε2ρx = −xρ whose
solution is given by (1.5).

In this paper, we are interested in the effect of small amount of diffusion when the steady steady state consists of
more than one delta function. This occurs when there is repulsion present (so that the particles dont all collapse into
a single point), but the repulsion is sufficiently weak so that far-field attraction causes “clumping” into two or more
delta-concentrations. As was shown in [12] in one dimension, (and extended in [10] to two and three dimensions),
the necessary condition for this to happen is that P ′(0) = 0, or equivalently, f(x) ∼ cx as x → 0 for some positive
constant c > 0. To illustrate this phenomenon as well as the results of the paper, consider the simplest such case,
namely the double-well potential, P (r) = −x2/2 + x4/4, so that

f(x) = x− x3. (1.6)

Figure 2(left) illustrates the behaviour of the deterministic system (1.1) with N = 200 particles, starting with initial
conditions consisting of 80 particles near x = −0.5 and 120 particles near x = 0.5. After some transient time,
the system evolves into a steady state consisting of two delta concentrations, with 40% of the mass at the left
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FIG. 2. LEFT: Simulation of the deterministic system (1.1) with f(x) = x − x3. Initial conditions consist 80 particles near
x = −0.5 and 120 particles near x = 0.5 (corresponding to M1 = 0.4,M2 = 0.6. The long-time dynamics approach two two
unequal delta-concentrations. The insert in top-left shows the histogram of the final steady state. MIDDLE: Same as left
figure, but with σ = 0.075 noise added. The concentration at the right initially has a larger mass, and it very slowly leaks its
mass towards a lighter concentration on the left. RIGHT: The total mass of left and right concentrations of the simulation
in the middle is plotted. After a short transient period, a slow mass exchange is is apparent, with the two masses gradually
equilibrating. Dashed line denotes the asymptotic prediction given by (1.5). apparent. Dashed curve is the asymptotic
prediction

concentration and 60% at the right. The distance between the two concentrations is x = 1 corresponding to the root
of (1.6), and this is trivially seen to be a steady state of (1.1) since f(0) = f(1) = 0. Moreover, as was shown in
[10, 12], such steady state is actually stable.

Now suppose there is a small amount of noise present in the system (say σ = 0.075) while keeping all other
parameters and initial conditions as in Figure 2(left). The result is shown in Figure 2(middle and right). Initially,
the system quickly settles to a two-concentration asymmetric steady state with roughly 40% of mass on the left and
60% of mass on the right, except that the noise “diffuses” the delta concentrations, so that the particles constantly
jiggle around, and the average density is a Gaussian. However on a much longer time-scale, there is a very slow
exchange of mass that takes place between the left and right concentrations, so that the bigger concentration slowly
leaks its mass towards the smaller, until the two concentrations eventually equilibrate. In other words, adding even
a small amount of noise eventually “symmetrizes” the asymmetric steady state over a long time. Quantifying this
very slow exchange of mass is the goal of this paper.

We now illustrate our main finding, which describes the exchange of mass between to asymmetric “diffused”
concentrations. The precise statement, for a general kernel f(x), is given in Proposition 3.1. To illustrate the result,
consider the cubic kernel (1.6), refer to Figure 2. Starting with arbitrary initial conditions, the system converges, on
an O(1) timescale, to a solution consisting of two concentrations. These concentrations will in general have unequal
masses (that depend on initial conditions), and their asymptotic profile is a Gaussian spike whose variance depends
on their relative masses M1,M2. Once these spikes form, there is a very slow equilibration process, whereby the mass
of a heavier spike leaks towards the lighter one. This process is meta-stable, meaning that it takes an exponentially
long time (in ε) for the masses to equilibrate. Specializing Proposition 3.1 to (1.6), this slow mass exchange is
described asymptotically by an ODE

d

dt
M1 = F (M1,M2)− F (M2,M1); M1 +M2 = M (1.7a)
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FIG. 3. Evolution of the density profile, for f(x) = x(1 − x2) and ε2 = 0.001. In the last three plots, the narrow grey lines
indicate the heights of the two maxima. Their heights converge at a slow timescale.

where M is the total mass, M1 and M2 are the masses of the two spikes, and

F (M1,M2) =
M2

2π

√
(2M2 −M1)

M
(2M1 −M2) exp

(
−M2 (2M1 −M2)

3

4M3ε2

)
. (1.7b)

The summary of the paper is as follows. In §2 we construct asymptotically the quasi-steady state consisting of two
Gaussians of masses M1,M2. In §3 we derive the equations of mass exchange between M1 and M2, on an exponentially
slow timescale, culminating in Proposition 3.1 which is the main result of this paper. From the equations for mass
exchange, we show that the masses equilibrate on a long time scale, that is, M1 = M2 is the unique global steady
state of the long-time dynamics. The reduced dynamics are also validated using full numerical simulations of 1.3,
showing a favorable comparison. We conclude with some remarks in §4

2. QUASI-STEADY STATE

In [10, 12] the authors constructed a steady state of (1.3) with zero diffusion consisting of discrete number (N ≥ 2)
of delta-concentrations. This happens when f(x) is linear near the origin, such as for example (1.6). More generally,
we will assume that:  f(x) is odd;

f(x) has a positive root at x = a;
f(x) is C1 at x = 0 and x = a with f ′(0) > 0 and f ′(a) < 0.

(2.8)
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Under these assumptions, a two-delta steady state of (1.3) with ε = 0 has the form

ρ(x, t) ∼M1δ (x− x1) +M2δ(x− x2) with x2 − x1 = a, M1 +M2 = M (2.9)

where M is the total density. Upon substituting (2.9) into v = f ∗ ρ we obtain that

v(x) = M1f(x− x1) +M2f(x− x2) (2.10)

Turning on ε in (1.3) “diffuses” the delta concentrations, so that the δ (x− x1) is replaced by a “spike” that has
width of O(ε). That is, we write

ρ(x, t) ∼M1
1

ε
w1

(
x− x1
ε

)
+M2

1

ε
w2

(
x− x1
ε

)
(2.11)

where wi(y) is the spike profile that is to be computed, with
∫∞
−∞ wi(y)dy = 1 and wi(y) > 0 for all y. Substituting

(2.11) into v = f ∗ ρ, and expanding the resulting integral in terms of Taylor series, we find that the leading-order
expression for the velocity v is then still given by (2.10) up to O(ε) order. To compute the profile of the left spike
w1(y), we let x = x1 + εy and expand (2.11). We have v (x1) = 0 so that

v (x1 + εy) ∼ −εc1y, c1 = −v′(x1) ∼ − (M1f
′(0) +M2f

′(a)) . (2.12)

We then substitute (2.12) into the steady state equation discard ρt (this is the assumption that ρ is a quasi-state).
Near x = x1 + εy we then obtain, up to exponentially small terms,

(yc1w1)y ∼ w1yy.

Assuming decay as y → ±∞ yields

ycw1 + w1y ∼ 0

so that

w1 ∼
1√

2c1π
exp

(
−y2

2
c1

)
. (2.13)

A necessary condition for decay is that c > 0. Performing a similar computation for w2 we obtain the following result.

Proposition 2.1. Suppose that f(x) satisfies conditions (2.8) and suppose that M1,M2 satisfy

−f ′(0)/f ′(a) < M1/M2 < −f ′(a)/f ′(0). (2.14)

Then (1.3) admits a quasi-equilibrium steady state that has the form

ρ(x, t) ∼
2∑

j=1

Mj

ε

√
2

πcj
exp

(
−
(
x− xj
ε

)2
cj
2

)
(2.15)

with x2 − x1 = a and cj = −v′(xj) with v given by (2.10); that is

c1 = − (M1f
′(0) +M2f

′(a)) ; c2 = − (M2f
′(0) +M1f

′(a)) . (2.16)

The masses M1,M2 satisfy M1 + M2 = M where M is the total mass that is determined by the initial conditions,
M =

∫∞
−∞ ρ(x, 0)dx.

As we show in §3, the masses M1 and M2 evolve on a timescale much larger than the timescale at which this
two-spike profile forms. In Figure 4 we compare the long-time solution of (1.3), as shown in the bottom right of
Figure 3, to the approximation (2.15) with M1 = M2.

Proposition 2.1 generalizes naturally to N concentrations. In this case, the sum
∑2

j=1 in (2.15) is replaced by∑N
j=1, with

cj = −
N∑

k=1

Mk f
′(xj − xk). (2.17)
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FIG. 4. Density profile at t = 500, for f(x) = x(1 − x2) and ε2 = 0.001; cf. Figure 3. Superimposed is the approximation
(2.15) with M1 = M2.

and the condition x2 − x1 = a is replaced by a system

N∑
k=1

Mkf(xj − xk) = 0, j = 1 . . . N. (2.18)

Finally, the two conditions (2.14) are replaced by N conditions

N∑
k=1

Mkf
′(xj − xk) < 0. (2.19)

3. METASTABLE DYNAMICS

We now derive the ODE describing the slow-time dynamics for the mass exchange between M1 and M2. The
starting point is the PDE (1.3) with v as given by (2.10). Note from the expansion for v near x1 (2.12) that
v(x1) = 0 and v′(x1) < 0 (which implies that the concentration at x = x1 attracts nearby points). Similarly
v(x2) = 0 and v′(x2) < 0. By continuity of v(x), there must be a point x̂ such that

x̂ : x̂ ∈ (x1, x2) with v(x̂) = 0 where v is given by (2.10) (3.20)

with v increasing at x̂. We further make the following technical assumption which will be needed for global stability:

The solution to (3.20) is unique with v′ (x̂) > 0. (3.21)

This holds for a large class of functions and in particular if f ′′′(x) < 0 for all x ∈ (0, a) . We identify this point x̂ as
the boundary point between mass belonging to spike #1 and mass belonging to spike #2.

Assuming that the density decays away from the xj , we have

M1 ∼
x̂∫

−∞

ρ(x)dx; M2 ∼
∞∫
x̂

ρ(x)dx. (3.22)

Integrating (1.3) we therefore obtain

d

dt
M1 = ε2ρx(x̂),

d

dt
M2 = −ε2ρx(x̂) (3.23)

where we assumed that ρ → 0 as x → ±∞. We assume that the dynamics are sufficiently slow that ρt term can be
discarded in (1.3). Then integrating the resulting ODE we obtain

ρv = ε2ρx − ε2ρx(x̂), x ∈ (x1, x2) (3.24)
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The solution to (3.24) is given by

ρ(x) =

ρ(x̂) + ρx(x̂)

x∫
x̂

exp(−V (z)/ε2) dz

 exp(V (x)/ε2), (3.25)

where

V (x) =

x∫
x̂

v(x)dx.

Note that −V (x) has a global maximum at x = x̂ (by (3.20) and (3.21)), so that we may use Laplace’s method to
evalute the integral in (3.25). We obtain:

x∫
x̂

exp(−V (z)/ε2) dz ∼ sign (x− x̂) ε

√
π

2v′(x̂)
, |x− x̂| � O(ε)

To determine ρx (x̂) , let x → xi, i = 1, 2, and match (??) with the inner solution as given by (2.15). Expanding
near x1, we let x = x1 + εy and expand

V (xj + εy) =

x1∫
x̂

v(s)ds+ v(xj)εy + v′(xj)ε
2 y

2

2
+ . . .

∼
x1∫
x̂

v(s)ds− cjε2
y2

2

where cj = −v′(xj) is as given in (2.16). Therefore the outer region written in inner variables near xj becomes

ρ(xj + εy) ∼
[
ρ(x̂) + sign (xj − x̂) ρx(x̂) ε

√
π

2v′(x̂)

]
exp

 1

ε2

xj∫
x̂

v(s)ds

 exp

(
−cj

y2

2

)
. (3.26)

On the other hand, the inner region near x = xj + εy as derived in (2.15) is

ρ ∼ Mj

ε

√
2

πcj
exp

(
−cj

y2

2

)
(3.27)

Matching (3.27) and (3.26) yields

M1

ε

√
2

πc1
=

[
ρ(x̂)− ρx(x̂) ε

√
π

2v′(x̂)

]
exp

 1

ε2

x1∫
x̂

v(s)ds

 , (3.28a)

M2

ε

√
2

πc2
=

[
ρ(x̂) + ρx(x̂) ε

√
π

2v′(x̂)

]
exp

 1

ε2

x2∫
x̂

v(s)ds

 . (3.28b)

Solving for ρx (x̂) from (3.28) and then using (3.23) finally yields

dM1

dt
∼M2

√
v′(x̂)

π2c2
exp

− 1

ε2

x2∫
x̂

v(s)ds

−M1

√
v′(x̂)

π2c1
exp

− 1

ε2

x1∫
x̂

v(s)ds

 ; (3.29a)

dM2

dt
= −dM1

dt
. (3.29b)

It is clear that the symmetric configuration M1 = M2 is an equilibrium of the ODE (3.29), since in this case,
x̂ = x1 + a/2 and c1 = c2,

∫ x1

x̂
v(s)ds =

∫ x2

x̂
v(s)ds. We now show that it is indeed a global attractor, provided
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FIG. 5. The graph of v(x) = M1f(x) +M2f(x−1) with f(x) = x−x3 and with M1,M2 as indicated in the legend. Increasing
M1 moves x̂ to the left.

(3.21) holds. From the equation v(x) = M1f(x − x1) + M2f(x − x2) and the fact that f(x − x1) is positive for
x ∈ (x1, x2) , it follows that v(x) is an increasing function of M1. This in turn shows that x̂ is a decreasing with M1,∫ x1

x̂
v(s)ds is decreasing with M1 and

∫ x2

x̂
v(s)ds is increasing with M1. Refer to Figure 5. It then follows from (3.29)

that dM1

dt < 0 whenever M1 > M2 and dM1

dt > 0 when M1 < M2. This shows that any admissable initial masses
satisfying (2.14) evolve towards the equal-mass M1 = M2 configuration.

We now summarize.

Proposition 3.1. Consider the quasi-state constructed in Proposition 3.1. The spike masses M1(t), M2(t) evolve on
an exponentially slow time-scale according to (3.29), where v(x) is given by (2.10) and x̂ satisfies (3.20). Moreover,
suppose that in addition to properties (2.8), f(x) also satisfies: f ′′′(x) < 0 for x ∈ (0, a) . Then M1 = M2 = M/2 is
the global attactor of (3.29) where M = M1 +M2 is the total mass, so that M1(t),M2(t)→M/2 as t→∞.

To illustrate Proposition 3.1, take

f(x) = x(1− x2).

Then the right hand side in (3.29) can be computed explicitly. Without loss of generality (translation invariance),
assume that x1 = 0, hence x2 = 1 so that v(x) given by (2.10) becomes

v(x) = x(1− x) (M1 − 2M2 +M x) .

The unique x̂ ∈ (0, 1) for which v(x̂) = 0 is therefore explicitly given by

x̂ =
2M2 −M1

M
,

and we compute

v′(x̂) =
(2M2 −M1)(2M1 −M2)

M
; (3.30)

and

x1∫
x̂

v (x) dx =
M1(2M2 −M1)3

4M3
;

x2∫
x̂

v (x) dx =
M2(2M1 −M2)3

4M3
. (3.31)

Substituting (3.30) and (3.31) into (3.29) yields an explicit ODE (1.7) for mass exchange dynamics. In figure 6, we
compare the solution to (1.7) with the full numerical solution to the original PDE (1.3). In addition, the dashed plot
shows the reduced PDE, where we replace the convolution v = f ∗ ρ by an explicit formula (2.10) for the velocity
v when computing the solution to (1.3). The masses M1 and M2 in (2.10) were computed at each numerically
using (3.22) for each time-step. In either the full or reduced PDE, we used finite differences with semi-implicit time
stepping: v(x) is computed explicitly at each time step, while the update for u(x, t + ∆t) is done implicitly. We
verified the accuracy by using several stepsizes. Interestingly, while the ODE (1.7) agrees reasonably well with the
full PDE, it agrees even better with the reduced PDE system – which is the starting point for the derivation of
Proposition 3.1. This makes sense, since there is a significant error that was made in this reduction. For numerical



9

time
0 500 1000 1500 2000 2500

m
as

s 
di

ffe
re

nc
e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
ǫ

2 = 0.002

ODE
full PDE
reduced PDE

time
0 1000 2000 3000 4000 5000

m
as

s 
di

ffe
re

nc
e

0

0.02

0.04

0.06

0.08

0.1

0.12
ǫ

2 = 0.0015

ODE
full PDE
reduced PDE

time ×104
0 0.5 1 1.5 2 2.5

m
as

s 
di

ffe
re

nc
e

0.04

0.06

0.08

0.1

0.12

ǫ
2 = 0.001

ODE
full PDE
reduced PDE

FIG. 6. Mass difference as a function of time, for the full PDE, reduced PDE and ODE. Top left: ε2 = 0.002. Top right:
ε2 = 0.0015. Bottom: ε2 = 0.001.

integration, we took the computational domain to be of size x ∈ [0, 3] . Because of the exponential decay outside
the spikes, doubling the domain size did not change the results. The initial conditions were taken to be (2.15), with
M1 = 0.35, M2 = 0.65. The centers of the two Gaussian peaks are taken a distance 1 apart. We also waited t = 10
time units to let the transients die out before starting the comparison; at t = 10 the system already converged to
the quasi-steady state.

Figure 6 shows that in general the mass difference that follows from the ODE corresponds well to the solution of
the reduced PDE. Both of them deviate from the solution of the full PDE, but they still exhibit the same trend. As
ε decreases, the equilibration process takes more time, as the effect of the diffusion term is smaller. However, the
maximum deviation between the curve for the ODE and the full PDE decreases as ε decreases.

4. DISCUSSION

In this paper we focused on the steady states of the aggregation equation with noise (1.3) that consists of two
nearly-Dirac concentrations. An important implication of the work presented here, is that not all steady states of
the zero-diffusion equation can be recovered as the limit as ε→ 0 of a sequence of steady states of the aggregation-
diffusion equation. This concerns in particular the two-Dirac steady states of unequal mass. Nevertheless, on short
timescales some reminiscents of these unequal-mass steady states are still present. To be more precise, there is an
intermediate timescale in which a state consisting of two Diracs of unequal mass persists as a metastable state.

We have shown that the process of equilibration can be described asymptotically by an ODE for the evolution of
the mass associated to each of the spikes. This ODE is valid on an exponentially long timescale, after the initial
two-spike quasi-state profile is formed on an O(1) timescale.
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An interesting, but nontrivial complication arises when one wants to derive an ODE for the mass evolution for
three or more spikes. In the case of two spikes, these are centred a distance a apart (with a such that f(a) = 0).
For more than two spikes a delicate balance needs to be satisfied: there is an algebraic system of equations involving
the masses and mutual distances, such that the velocity at each centre is zero. This algebraic relation, together with
an ODE for the evolution of each mass, accounts for the simultaneous evolution of the centres of the spikes and the
masses towards equilibrium.

As in the case of two spikes, the steady state consisting of three delta-concentrations in the absence of diffusion is
degenerate: there is an arbitrariness in how the three masses are distributed among the three holes, and there are two
degrees of freedom (three masses subject to constraint M1 +M2 +M3 = 1). However when the diffusion is turned on,
this two-parameter family of steady states should “collapse” into a unique steady state. It would be very interesting
to characterize precisely which mass fractions are “selected” by the diffusion. Unlike the two-spike solution where
diffusion “chooses” the equal-mass configuration, in the case of the three-spike configuration, the diffusion should in
general select unequal mass fractions.

It would be interesting to extend these results to two and higher dimensions. In two dimensions, at least three
delta-concentrations are required for stability [10] (in the case three delta-concentrations, their locations form an
equilateral triangle). The construction of the inner solution near the spike is analogous to the derivation in §2. On
the other hand, the outer region is cannot easily solved, as it requires solving a fully two-dimensional PDE, and
performing matching is a nontrivial problem. Nonetheless there is a hope that WKB-type techniques can be used
to approximate the solution to the outer region for small diffusion. It would be interesting if similar “equilibration”
results can be obtained in two dimensions.
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