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Abstract

We consider an aggregation model for two interacting species. The coupling between
the species is via their velocities, that incorporate self- and cross-interactions. Our
main interest is categorizing the possible steady states of the considered model in
two dimensions. Notably, we identify their regions of existence and stability in the
parameter space. For assessing the stability we use a combination of variational tools
(based on the gradient flow formulation of the model and the associated energy), and
linear stability analysis (perturbing the boundaries of the species’ supports). We rely
on numerical investigations for those steady states that are not analytically tractable.
Finally we perform a two-scale expansion to characterize the steady state in the limit
of asymptotically weak cross-interactions.

Keywords: multi-species models, swarm equilibria, energy minimizers, gradient flow, linear
stability, asymptotic analysis

1 Introduction

In this paper we consider a two-species aggregation model in the form of a system of partial
differential equations1:

∂ρ1

∂t
+∇ · (ρ1v1) = 0, v1 = −∇Ks ∗ ρ1 −∇Kc ∗ ρ2, (1a)

∂ρ2

∂t
+∇ · (ρ2v2) = 0, v2 = −∇Kc ∗ ρ1 −∇Ks ∗ ρ2. (1b)

Here, ρ1 and ρ2 are the densities of the two species, Ks and Kc are self- and cross-interaction
potentials, and the asterisk ∗ denotes convolution. The self-interaction potential Ks models
inter-individual social interactions within the same species, while Kc models interactions be-
tween individuals of different species. Typically, interaction potentials are assumed to be sym-
metric, and also, to model long-range attraction and short-range repulsion. Model (1) applies
to arbitrary spatial dimension.

Our main motivation for studying this model is the self-organization occurring in aggregates
of biological cells. Experimentally observed sorting of embryonic cells has been documented
in various works [1, 29]; we also refer to Figure 1 in [11] for a schematic overview of possible
patterns of two species of certain embryonic cells. These patterns range from complete mixing
at the cell level, to full separation of the two species. The major goal of the present paper is
to investigate equilibrium solutions, along with their stability, using model (1) in two spatial
dimensions. The nonlocality in our model resembles that in e.g. [1, 38].

1Strictly speaking, these equations are integro-differential equations due to the nonlocality (convolutions) in
the expressions for v1 and v2. Throughout this paper we will refer to (1) as a ‘PDE model’, though.
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The one-species analogue of (1) is a mathematical model for collective behaviour that has
seen a surge of attention in recent literature. A variety of issues have been studied for the
one-species model, such as the well-posedness of solutions [9, 8, 13, 23], equilibria and long-
time behaviour [36, 26, 40, 25], blow-up (in finite or infinite time) by mass concentration [24,
6, 30], existence and characterization of global minimizers for the associated interaction energy
[2, 16, 12, 39], and passage from discrete to continuum by mean-field limits [14]. A particularly
appealing aspect of the model is that despite its simplicity, its solutions can exhibit complex
behaviour and can capture a wide variety of “swarm” behaviour. Provoking and motivational
galleries of solutions that can be obtained with the one species model can be found for instance
in [34, 40]. They include aggregations on disks, annuli, rings, soccer balls, and many others.

Despite the intensive activity on the one-species model, its extensions to multiple species
have remained largely unexplored. From an analysis viewpoint, the well-posedness of solutions
to multi-species aggregation models of type (1) has been recently considered in various works
[21, 19]. The general setup is to investigate existence and uniqueness of weak measure solutions
using tools from optimal mass transportation such as Wasserstein distance(s). In particular, the
authors of [21] consider a more general model where the two species have distinct self-interaction
potentials, and cross-interaction potentials that are a scalar multiple of each other. They show,
under certain assumptions on the potentials, that the two-species aggregation model represents
a gradient flow with respect to a modified Wasserstein distance of an interaction energy that
comprises self- and cross-interaction terms.

Two-species models similar to (1) have been studied recently in the context of predator-prey
dynamics [15, 22]. To model such interactions one needs to consider cross-interaction potentials
that have opposite signs, so that the predator is attracted to prey, while the prey is repelled by
it. Both [15] and [22] show very intricate patterns that form dynamically (and at equilibrium)
with such predator-prey systems. Note that in model (1), the cross-interaction potential Kc

is not restricted to be exclusively attractive or repulsive; the particular form considered in the
sequel includes in fact both attractive and repulsive cross-interactions between the two species.

The present study focuses on the aggregation model (1) in two dimensions, with self- and
cross-interaction potentials Ks and Kc that consist of Newtonian repulsion and quadratic at-
traction. Specifically, we consider interaction potentials of the form:

Ks(x) = −as ln |x|+ bs
2
|x|2, (2a)

Kc(x) = −ac ln |x|+ bc
2
|x|2, (2b)

where as, bs represent the magnitudes of self-attraction and self-repulsion interactions, and
similarly, ac, bc represent the strengths of cross-attraction and cross-repulsion, respectively. All
these parameters are taken to be strictly positive.

Interaction potentials in the form (2) have been studied in various works on the one-species
model [24, 26, 25, 31]. It has been demonstrated in [7, 26] that solutions to the one-species
aggregation equation, with an interaction potential of form (2a), approach asymptotically a
radially symmetric equilibrium that consists in a ball of constant density. More generally,
equilibria for interaction potentials in power-law form have been illustrated and investigated in
numerous studies on the one-species aggregation model [34, 40, 25, 3].

For the two-species model studied in this paper, potentials in the form (2) also have the
remarkable property that they lead to equilibria of constant densities within their supports.
Nevertheless, for two species, there is a much more diverse set of such equilibrium configurations,
which include both symmetric and non-symmetric states. To offer an early motivation for our
study, we introduce briefly Figure 1, which shows a gallery of equilibria that can be obtained
with model (1) in two dimensions, for interaction potentials in the form (2).

Figure 1 shows the two populations ρ1 and ρ2 in blue circles and red diamonds, respectively.
These equilibria were found numerically by using the particle system associated to the PDE
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model (1); see Section 2.4 for more details. In the figure, and throughout the paper, we employ
the notations:

A =
ac
as
, B =

bc
bs
, M =

M1

M2
, (3)

where M1 and M2 denote the total masses of the two densities ρ1 and ρ2, respectively. Note
that M1 and M2 do not depend on time, and consequently, are set by the initial densities. This
fact can be inferred, at least formally, by integrating over the entire space the two evolution
equations in (1a) and (1b) (see also equation (5)). Throughout the paper we take M1 > M2 (or,
by the notation in (3), M > 1), so in all illustrations, the heavier species ρ1 is shown in blue
circles, while the lighter species ρ2 appears in red diamonds.

In Figure 1, the obtained steady states are shown in the (A,B)-phase plane according to
their parameter values. The solid and dashed lines and curves in the diagram are relevant for the
existence and stability of such steady states (their exact descriptions can be found in Figure 2).
The major focus of the present paper is the investigation of several of the equilibria illustrated
in Figure 1. Before we present an overview of the results reported herein (see below), let us
discuss briefly the two main approaches that we use in our investigations, each with its own
merits and limitations.

One approach is to consider the variational interpretation [21], and investigate equilibrium
solutions to (1) as stationary points of the interaction energy. To establish whether such sta-
tionary points are energy minimizers we adopt and extend the framework developed in [5] for
the one-species analogue of model (1). In such setup, the problem reduces to investigating the
first and second variations of the energy for various perturbations that may occur. Variational
approaches to the one-species aggregation model have received a great deal of interest lately
[2, 12, 16, 12, 39], and a few very recent works have also dealt with two-species models [17, 4].
The other approach considered in this work is quite different in spirit, and it consists in a linear
stability analysis of the boundaries that enclose the two aggregations. Here, we take advan-
tage of the choice of potentials considered in this paper, consisting of Newtonian repulsion and
quadratic attraction, for which the equilibria are made of compactly supported aggregations of
constant densities [26]. This approach reduces the dimensionality of the problem, since we focus
on the stability of the boundaries of the supports only, for which we find self-contained evolution
equations.

The approach to linear stability that we consider in this paper relates to techniques used
to study neural field models [27, 28, 18, 10, 20]. In particular in [27] the authors study certain
“breather” patterns by looking at the evolution of their boundaries. They also use azimuthal
perturbations to analyze their stability – see Section 2.3 for more details and further discussion
of this literature. Our approach also relates to previous works of one of the authors of the
current paper. Specifically, in [15], a technique similar to the one used in the current paper is
used to perturb the boundaries of a compactly supported swarm density. In [37] the authors
study the stability of equilibria supported on one-dimensional curves for the class of aggregation
models considered in his paper. In both [34] and [33], the authors perturb a finite number
of discrete points on a circle. Their algebraic descriptions can however be generalized to a
(continuous) circular curve, and the formulas can moreover be rewritten exactly in the form
we use (including the Fourier decomposition; cf. (28) and (35)). We apply this procedure to
a particular equilibrium that resembles the image of a target used for shooting or archery (see
e.g. Figure 4); henceforth, we simply call such configuration a “target”.

Overview of the results of the paper. The results of this paper concern steady states
of model (1) –in two dimensions, with interaction potentials (2)– and their stability as the
interaction parameters are varied. The phase plane in Figure 2 is subdivided into the relevant
parameter regimes D1 to D6. These regions are bounded by the solid lines in the figure whose
equations are given in terms of A, B and M introduced in (3).

We note that in the variational approach, for most of the parameter space we had to restrict
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B =
bc
bs

A =
ac
as

M1/M 1

1

A=0.5
B=0.4

A=0.5
B=1

A=3
B=3.5

A=3
B=2

A=3
B=0.75

Figure 1: Overview of steady states of model (1) in two dimensions, with interaction potentials
of the form (2), as encountered in numerical investigations of the associated particle system
– cf. Section 2.4. The equilibria are placed in the (A,B)-plane according to their parameter
values. For (A,B) = (3, 3.5) and for (A,B) = (3, 2) two distinct steady states are observed,
depending on the initial data. Theoretical considerations using a variational approach and a
linear analysis focus on the “overlap solution” seen here for (A,B) = (0.5, 1) and the “target
equilibrium” illustrated in the left-hand plot for (A,B) = (3, 3.5).

B =
bc
bs

A =
ac
as

M1/M 1

1

B =
A−M

1−M A
B =

1−M A

A−M B = A

D1

D2

D3

D4

D5

D6

Figure 2: Regions of existence and stability of the equilibria; the solid lines are the regions’
boundaries. The grey shaded area is the one where A < 1 and B > 1; for parameters in this
region we identify global minimizers of the interaction energy.

ourselves to a subset of all possible perturbations, specifically to perturbations that are not
entirely contained within the support of the equilibrium; throughout the paper we refer to such
perturbations as perturbations of class B – see Section 2.2 for details. General perturbations (of
compact support) could be dealt with only for A < 1 and B > 1, the shaded region in Figure 2.
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Target equilibrium. In Section 3 we focus on a state in which the two species segregate and
we have a disk of one species surrounded concentrically by an annular region of the other species.
As noted above, we call such states targets. Target equilibria can be of two types, depending
whether the lighter or the heavier species occupies the interior disk. A target equilibrium with
the lighter (red diamonds) species inside is shown for (A,B) = (3, 3.5), at the left-hand side, in
Figure 1.

The main results concerning the two types of target equilibria are:

• Propositions 3.2 and 3.5 (local minimizers with respect to class B perturbations): The
target equilibrium with the lighter species inside is a local minimizer with respect to
perturbations of class B for (A,B) in D4 ∪ D5, as well as for (A,B) in a certain subset
of D3. The target equilibrium with the heavier species inside is a local minimizer with
respect to class B perturbations for all (A,B) in D2∪D3, and for (A,B) in a certain subset
of D4.

• Theorem 3.3 (global minimizer): The target equilibrium with the lighter species inside is a
global minimizer with respect to compactly supported admissible densities, for all (A,B)
in D5 with A < 1, i.e., in the intersection of D5 with the shaded region in Figure 2.

• Theorems 3.4 and 3.6: A target with the lighter species inside exists as a linearly stable
steady state only in the parameter region D4 ∪D5. Whenever the target with the heavier
species inside exists, it is unstable.

Note that due to the limitations of the variational approach, the predicted stability regions
for both types of targets (light and heavy inside) in the variational study are larger compared
to what the linear stability analysis and the numerics predict. Numerical investigations confirm
the linear stability analysis: the target with the lighter species inside is only observed in D4∪D5,
while the target with the heavier species inside is never encountered.

Overlap equilibrium. In Section 4 we investigate the state in which the supports of both
species are two concentric disks of possibly different widths. Within the smallest of these disks,
the two species coexist. We use the term “overlap” equilibria to refer to such configurations;
an example of such a state is shown in Figure 1 for (A,B) = (0.5, 1). In Section 4 only the
variational approach is employed, as due to overlapping supports, perturbing boundaries to
perform a linear stability, is very delicate.

We derive the following results on overlap equilibria:

• Propositions 4.1 and 4.3 (local minimizers with respect to class B perturbations): The
overlap solution with the lighter species inside is a local minimizer with respect to class
B perturbations for (A,B) ∈ D6, but not for (A,B) ∈ D3. The overlap solution with the
heavier species inside is a local minimizer with respect to perturbations of class B when
(A,B) ∈ D1, but not for (A,B) ∈ D4.

• Theorem 4.2 (global minimizer): The overlap equilibrium with the lighter species inside is
a global minimizer with respect to admissible densities of compact support, for all (A,B)
in D6 with B > 1, i.e. in the intersection of D6 with the shaded region in Figure 2.

The results on the overlap equilibria with the lighter species inside is in full agreement with
what we find numerically. On the other hand, the overlap solution with the heavier species inside
is never observed numerically. We conjecture that this overlap state is not in fact a minimizer
for general perturbations.

Non-symmetric equilibria. In Section 3.3, we show by means of numerics how the non-
radially symmetric states in the right-hand part of Figure 1, relate to the target solution. We
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take parameters in certain regions where the target (either light, or heavy inside) is not a stable
steady state. We initialize the system at the target (some small numerical deviation from the
actual equilibrium being inevitably present), run the dynamics and wait until the small initial
error triggers the instability. Some examples are illustrated in Figures 9 and 10. We relate this
process with the mode instabilities found through linear analysis.

Similarly, the non-symmetric state shown for (A,B) = (0.5, 0.4) arises by initializing the
system in the overlap state. This is shown in Figure 13 of Section 4.3. Apparently, the two
species’ centres of mass coincide in D6, yet the symmetry is broken once we cross the boundary
B = A and take parameters in D1. The steady state for (A,B) = (0.5, 0.4) exhibits in the
middle an area in which the two species coexist. In Section 5 we quantify this process of radial
symmetry breaking asymptotically in the limit of weak cross-interactions, that is, asymptotically
close to (A,B) = (0, 0). Asymptotically, as the strength of the cross-interactions goes to zero,
we identify the following regimes (see Figure 15):

A/B < 1 : Both species fully mix and are supported on the same disk of radius
√
as/bs.

1 < A/B < 4 : The two species partially mix, as they are supported on partially overlapping
disks. The distance between the centres of mass is implicitly defined in terms of A/B.

A/B = 4 : The two species are supported on tangential disks.

A/B > 4 : The two species are supported on disjoint disks. The distance between the centres
of mass increases proportionally to

√
A/B.

2 Preliminaries

In this section we present the two approaches taken in this paper to study the stability of
equilibria, i.e., variational and linear analysis, along with some general properties of model
(1). We refer specifically to the model in two dimensions, but the general properties and the
variational formalism apply to any spatial dimension.

2.1 General preliminaries

The interaction potentials considered in this paper (see (2)) are symmetric, that is,

Ks(x) = Ks(−x), Kc(x) = Kc(−x), for all x. (4)

Model (1) with symmetric interaction potentials conserves the mass and the centre of mass of
each species, as elaborated below.

Conservation of mass and centre of mass. The dynamics of model (1) conserve the mass
of each species: ∫

ρi(x, t) dx = Mi for all t ≥ 0, i = 1, 2, (5)

as well as the total centre of mass:∫
x(ρ1(x, t) + ρ2(x, t)) dx = const. for all t ≥ 0. (6)

Indeed, conservation of mass follows immediately as the equations of motion (1) are in conser-
vation law form. To get (6), multiply each equation in (1) by xk (xk denotes the k-th spatial
coordinate), and add the two equations. After integrating by parts and using vanishing at
infinity boundary conditions, one finds

d

dt

∫
xk(ρ1(x, t) + ρ2(x, t)) dx =

∫
(ρ1v1 + ρ2v2) · ek dx, (7)
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where ek denotes the unit vector in the direction of the k-th coordinate. Furthermore, by the
expressions of v1 and v2 from (1a) and (1b), together with the symmetry of Ks, one gets∫

(ρ1v1 + ρ2v2) dx = −
∫∫
∇Ks(x− y)ρ1(x)ρ1(y) dxdy︸ ︷︷ ︸

=0 by (4)

−
∫∫
∇Kc(x− y)ρ1(x)ρ2(y) dxdy

−
∫∫
∇Ks(x− y)ρ2(x)ρ2(y) dxdy︸ ︷︷ ︸

=0 by (4)

−
∫∫
∇Kc(x− y)ρ2(x)ρ1(y) dxdy.

Finally, the symmetry of Kc yields the expression above zero, as∫∫
∇Kc(x−y)(ρ1(x)ρ2(y)+ρ2(x)ρ1(y)) dxdy =

∫∫
(∇Kc(x− y) +∇Kc(y − x)︸ ︷︷ ︸

=0 by (4)

)ρ1(x)ρ2(y) dxdy.

From (7) one can now derive the conservation of centre of mass (6).

Equilibria for interaction potentials in the form (2). Similar to the one-species model,
interaction potentials in the form (2), have the outstanding property that they lead to equilibria
of constant densities. Indeed, from the equation for v1 in (1a), and (2), we get

∇ · v1 = −∆Ks ∗ ρ1 −∆Kc ∗ ρ2

= 2πasρ1 + 2πacρ2 − 2bsM1 − 2bcM2, (8)

where for the second equality we also used ∆
(

1
2π ln |x|

)
= δ, and the mass constraint (5). Also,

by a similar calculation,

∇ · v2 = 2πasρ2 + 2πacρ1 − 2bsM2 − 2bcM1. (9)

Note that due to the specific form of the interaction potentials used here, ∇ · vi are local
quantities, i.e., ∇ · vi(x) depends only on the values of the densities ρ1(x) and ρ2(x) at location
x. As seen below, the key consequence of this fact is that at equilibrium, the two species must
have constant densities on their supports.

Consider now an equilibrium configuration (ρ̄1, ρ̄2) for model (1) with interaction potentials
given by (2). At any point x in the support of ρ̄i, the velocity v̄i (and consequently its divergence)
vanishes. Hence, at a point x that lies in the supports of both ρ̄1 and ρ̄2 (i.e., where the two
species overlap), by (8) and (9), the values of the equilibrium densities ρ̄1(x) and ρ̄2(x) satisfy
a linear system of equations – see its solution in (10) below. On the other hand, if x lies in the
support of species i, but outside the support of species j (here j 6= i), then ρ̄j(x) = 0 and by
setting ∇ · v̄i(x) to 0 (use (8) if i = 1 or (9) if i = 2) one finds an explicit expression for ρ̄i(x).
Finally, there is the trivial case in which x is not in the support of either species, in which case
ρ̄i(x) = 0 (i = 1, 2).

To conclude, by the considerations above, there are four possible combinations that the
equilibrium densities of the two species can have at location x:

(ρ̄1(x), ρ̄2(x)) =



(0, 0), for x /∈ supp(ρ̄1) ∪ supp(ρ̄2)(
0, bcM1+bsM2

πas

)
, for x /∈ supp(ρ̄1), x ∈ supp(ρ̄2)(

bsM1+bcM2
πas

, 0
)
, for x ∈ supp(ρ̄1), x /∈ supp(ρ̄2)(

(asbs−acbc)M1+(asbc−acbs)M2

π(a2s−a2c)
, (asbc−acbs)M1+(asbs−acbc)M2

π(a2s−a2c)

)
,

for x ∈ supp(ρ̄1) ∩ supp(ρ̄2).

(10)
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We use the parameters A and B introduced in (3), to define the (A,B) phase plane. This
phase plane is given in Figure 2 and subdivided in six regions named D1 to D6. The exact
formulas for the boundaries of these regions are a result of our investigation of the existence and
stability of steady states. More details will be given in Sections 3 and 4. The same phase plane
was already used in Figure 1 to present the gallery of numerical steady states. Note that in each
equilibrium configuration shown in Figure 1 the two species have constant densities within their
supports, regardless of whether the equilibria are radially symmetric or not.

2.2 Variational approach

Energy and gradient flow. The interaction energy corresponding to model (1) is given by

E[ρ1, ρ2] =
1

2

∫∫
Ks(x− y) (ρ1(x)ρ1(y) + ρ2(x)ρ2(y)) dx dy +

∫∫
Kc(x− y)ρ1(x)ρ2(y) dx dy,

(11)
where the two terms represent the self-interaction and the cross-interaction energies, respectively.
While there has been significant progress recently on the study of minimizers for the interaction
energy of the one-species model [2, 5, 12, 16, 12, 39], there is only a handful of works on the
two-species interaction energy.

In [21] the authors make precise the gradient flow structure (with respect to energy (11)) of
model (1) by generalizing the theory of gradient flows on probability spaces previously developed
for the one-species model [13]. The setup there is very general and allows for measure-valued
solutions and mildly singular (C1 except at origin) interaction potentials. Studying critical points
and minimizers of the energy functional (11) is central to our variational approach. We also point
out that there are related works on ground states for two-phase/two-species interaction energies
such as (11), where interactions are assumed to be purely attractive, but with an additional
requirement of boundedness being enforced [17, 4]. In [4] the setting of [17] is extended by
including diffusion (entropy). Moreover, they study the connection between energy minimizers
and the long-time dynamics of the gradient flow.

General variational setup. The authors in [5] study the energy functional that corresponds
to the one species model and find conditions for critical points to be energy minimizers. We
adapt the setup from there to the two species model. We note here that, while the extension
to multiple species is immediate, it does not appear explicitly anywhere in literature. For this
reason, we lay out first the variational framework for generic interaction potentials Ks and Kc,
before using it for the specific potentials in (2).

By conservation properties (5) and (6), we consider the variational problem of minimizing
E[ρ1, ρ2] from (11) over densities that have fixed masses and total centre of mass (also note here
that the energy E is translation invariant). Hence, with no loss of generality we can take the
centre of mass of admissible densities to be at the origin. The variational problem is to minimize
E over the set F given by

F =

{
(ρ1, ρ2)

∣∣ ρi : R2 → [0,∞),

∫
R2

ρi(x)dx = Mi,

∫
R2

x(ρ1(x) + ρ2(x)) dx = 0

}
. (12)

Consider (ρ̄1, ρ̄2) ∈ F with masses (M1,M2) and supports (Ω1,Ω2), and take a small pertur-
bation ε(ρ̃1, ρ̃2):

ρi(x) = ρ̄i(x) + ερ̃i(x), i = 1, 2, (13)

where (ρ1, ρ2) ∈ F . Perturbations are assumed to preserve the individual masses of the two
species, as well as the total centre of mass, i.e., they satisfy:∫

R2

ρ̃i(x) dx = 0, i = 1, 2, (14)
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and ∫
R2

x(ρ̃1(x) + ρ̃2(x)) dx = 0. (15)

Since the energy functional is quadratic, one can write:

E[ρ1, ρ2] = E[ρ̄1, ρ̄2] + εE1[ρ̄1, ρ̄2, ρ̃1, ρ̃2] + ε2E2[ρ̃1, ρ̃2], (16)

where E1 denotes the first variation:

E1[ρ̄1, ρ̄2, ρ̃1, ρ̃2] =

∫ [∫
Ks(x− y)ρ̄1(y) dy +

∫
Kc(x− y)ρ̄2(y) dy

]
ρ̃1(x) dx

+

∫ [∫
Ks(x− y)ρ̄2(y) dy +

∫
Kc(x− y)ρ̄1(y) dy

]
ρ̃2(x) dx,

(17)

and E2 the second variation, which in fact has the same expression as the energy itself:

E2[ρ̃1, ρ̃2] = E[ρ̃1, ρ̃2]. (18)

In the sequel, we will consider two classes of perturbations, denoted as A and B. These
choices are inspired by the setup in [5]. Class A consists of perturbations (ρ̃1, ρ̃2) such that
each ρ̃i is supported in Ωi (here i = 1, 2). Class B is made of perturbations (ρ̃1, ρ̃2) such that
at least one ρ̃i has a support with a non-empty intersection with the complement Ωc

i of Ωi

(i = 1, 2). By considering class A perturbations, one can test whether an equilibrium is an
energy minimizer with respect to redistributions of mass of species i within its own support Ωi.
Similarly, by considering class B perturbations one checks whether transporting mass from Ωi

into its complement Ωc
i results (or not) into a more energetically favourable state. Hence, A and

B are disjoint and cover all possible perturbations (ρ̃1, ρ̃2).

Start by taking perturbations of class A. Since ρ̃i changes sign in Ωi (i = 1, 2), for (ρ̄1, ρ̄2)
to be a critical point of the energy, the first variation must vanish. Using the notations

Λ1(x) =

∫
Ω1

Ks(x− y)ρ̄1(y) dy +

∫
Ω2

Kc(x− y)ρ̄2(y) dy, (19a)

Λ2(x) =

∫
Ω2

Ks(x− y)ρ̄2(y) dy +

∫
Ω1

Kc(x− y)ρ̄1(y) dy, , (19b)

in (17), one can write the first variation as

E1[ρ̄1, ρ̄2, ρ̃1, ρ̃2] =

∫
R2

Λ1(x)ρ̃1(x) dx+

∫
R2

Λ2(x)ρ̃2(x) dx. (20)

Then, given that perturbations ρ̃i are arbitrary and satisfy (14), one finds that E1 vanishes
provided Λi is constant a.e. in Ωi, i.e.,

Λ1(x) = λ1 for a.e. x ∈ Ω1, and Λ2(x) = λ2 for a.e. x ∈ Ω2. (21)

The above conditions can also be found via a Lagrange multiplier argument, by imposing the
constant mass condition as a constraint [5]. Also, cf. [5], Λi(x) has a physical interpretation:
it represents the energy per unit mass felt by a test mass of species i at position x, due to
interaction with the swarm. At equilibrium, this energy is constant within each species.

Equation (21) represents a necessary condition for (ρ̄1, ρ̄2) to be an equilibrium. For (ρ̄1, ρ̄2)
that satisfy (21) to be a local minimizer with respect to class A perturbations, the second
variation (18) must be non-negative. In general, the sign of E2 cannot be assessed easily.

Consider now perturbations of class B. Since perturbations ρ̃i must be non-negative in the
complement Ωc

i of Ωi, one can extend the argument in [5] and show that a necessary and sufficient
condition for E1 ≥ 0 is

Λ1(x) ≥ λ1 for a.e. x ∈ Ωc
1, and Λ2(x) ≥ λ2 for a.e. x ∈ Ωc

2. (22)
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Given the physical interpretation of Λi(x) as energy (per unit mass), (22) assures that trans-
porting mass from Ωi into its complement Ωc

i increases the total energy [5].
To show that (22) is sufficient for E1 ≥ 0, suppose an equilibrium (ρ̄1, ρ̄2) satisfies (21) and

(22). Then,

E1 =

∫
Ω1

Λ1(x)︸ ︷︷ ︸
=λ1

ρ̃1(x) dx+

∫
Ωc1

Λ1(x)︸ ︷︷ ︸
≥λ1

ρ̃1(x) dx+

∫
Ω2

Λ2(x)︸ ︷︷ ︸
=λ2

ρ̃2(x) dx+

∫
Ωc2

Λ2(x)︸ ︷︷ ︸
≥λ2

ρ̃2(x) dx

≥ λ1

∫
R2

ρ̃1(x) dx+ λ2

∫
R2

ρ̃2(x) dx,

where we also used that ρ̃i ≥ 0 in Ωc
i . By (14) one concludes E1 ≥ 0.

Conversely, suppose that (22) does not hold; assume for instance that Λ1(x) < λ1, for x in
a set A ⊂ Ωc

1 of non-zero Lebesgue measure. Then, by taking ρ̃2 = 0 and perturbations ρ̃1 that
are supported on Ω1 and A, we have

E1 =

∫
Ω1

Λ1(x)︸ ︷︷ ︸
=λ1

ρ̃1(x) dx+

∫
A

Λ1(x)︸ ︷︷ ︸
<λ1

ρ̃1(x) dx.

Again, by (14), one finds E1 < 0, which completes the argument.
In summary, a critical point (ρ̄1, ρ̄2) for the energy satisfies the Fredholm integral equation

(21) on its support. The critical point is a local minimum with respect to perturbations of
class A if the second variation is non-negative for such perturbations. Also, (ρ̄1, ρ̄2) is a local
minimizer with respect to perturbations of class B if it satisfies (22).

To establish whether an equilibrium is a global minimizer, one needs to investigate closely
the second variation E2 for general perturbations. From (16) we see that a sufficient condition
for a local minimizer to be global minimizer is that E2 ≥ 0. Such condition is not necessary
though, as (16) is exact, and for a global minimum one needs in fact εE1+ε2E2 ≥ 0, for arbitrary
ε > 0.

Remark 2.1. We note that in the minimization considerations above we followed the simplified
setup and approach from [5]. A reader interested in a mathematically complete and rigorous
framework of the minimization conditions (22) (including a rigorous derivation of the Euler-
Lagrange equations (21)) can consult for instance [2, Theorem 4]; the derivation there is for
equilibria of one species in free space, but it extends immediately to multiple species and ar-
bitrary domains Ω, as considered in this paper. The authors in [2] consider the variational
problem over more general admissible densities that lie in a Borel measure space, endowed with
the 2-Wasserstein metric [2, 3]. In fact, we could have also worked in a more general setup
and consider minimization over measure spaces (as opposed to over integrable non-negative den-
sities as in (12)), but given the equilibria that we are investigating in this work, adding such
technicalities into our study would have obstructed the presentation.

Throughout the paper we apply the variational framework above for interaction potentials
given by (2) and equilibria consisting of target and overlap configurations. For such specific
choices, exact expressions for Λ1(s) and Λ2(x) can be found and consequently, minimization
with respect to class B perturbations (cf. (22)) be investigated explicitly. A more challenging
task is to assess the sign of the second variation E2, and hence draw conclusions with respect
to class A perturbations. We have some partial results in this regard, based on an explicit
calculation of E2 (corresponding to potentials (2)); we present below this calculation.

Second variation E2 for interaction potentials of form (2). A challenging aspect in the
variational study is to establish the sign of the second variation of the energy. Assessing the sign
of E2 is needed if one wants to determine whether an equilibrium (ρ̄1, ρ̄2) is a local minimizer
with respect to class A perturbations. Also, given that formula (16) is exact, by determining
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the sign of the second variation one can establish whether an equilibrium is a global minimizer,
as detailed below.

Consider the second variation of the energy E2 that corresponds to the interaction potentials
(2). By (18) and (11), we can write

E2(ρ̃1, ρ̃2) = I + II, (23)

where

I :=− 1

2
as

∫∫
ln |x− y|(ρ̃1(x)ρ̃1(y) + ρ̃2(x)ρ̃2(y)) dxdy − ac

∫∫
ln |x− y|ρ̃1(x)ρ̃2(y) dxdy,

II :=
1

4
bs

∫∫
|x− y|2(ρ̃1(x)ρ̃1(y) + ρ̃2(x)ρ̃2(y)) dxdy +

1

2
bc

∫∫
|x− y|2ρ̃1(x)ρ̃2(y) dxdy.

We will pursue the following strategy. The expression for term II can be easily simplified
by expanding |x− y|2 and using the conservation properties (14) and (15) of the perturbations.
Term I is more subtle, as integrals there involve the logarithmic potential, which becomes infinite
at origin (where it is integrable however), as well as at infinity. For this reason, in the study on
E2 that follows below we consider the variational problem on densities in F that are compactly
supported:

Fc = {(ρ1, ρ2) ∈ F , ρi has compact support in R2}. (24)

Note that by restricting to densities in Fc, the admissible perturbations ρ̃1, ρ̃2 are also compactly
supported in R2.

For term II above, one finds by expanding |x− y|2 = |x|2 − 2x · y + |y|2 and using (14) and
(15):

II = −1

2
bs

(∫
xρ̃1(x) dx

)2

− 1

2
bs

(∫
xρ̃2(x) dx

)2

− bc
(∫

xρ̃1(x) dx

)(∫
xρ̃2(x) dx

)
= (bc − bs)

(∫
xρ̃1(x) dx

)2

. (25)

For term I we use the theory for logarithmic potentials presented in [35]. Theorem 1.16 in
[35, Chapter I] states that the symmetric bilinear form

−
∫∫

R2×R2

ln |x− y| dµ(x) dν(y)

is positive definite on the space of signed measures with compact support in R2 that satisfy∫
dµ(x) = 0. In other words, the bilinear form above is an inner product.

Given the ρ̃i are compactly supported and integrate to zero (by (14)), ρ̃i dx belong to this
inner product space and by Cauchy-Schwarz inequality,∣∣∣∣∫∫ ln |x− y|ρ̃1(x)ρ̃2(y) dxdy

∣∣∣∣ ≤(
−
∫∫

ln |x− y|ρ̃1(x)ρ̃1(y) dxdy

) 1
2
(
−
∫∫

ln |x− y|ρ̃2(x)ρ̃2(y) dxdy

) 1
2

.

Then, one can estimate

I ≥ 1

2
(as − ac)

(
−
∫∫

ln |x− y|ρ̃1(x)ρ̃1(y) dxdy −
∫∫

ln |x− y|ρ̃2(x)ρ̃2(y) dxdy

)
, (26)

where the term in the round brackets on the right-hand-side is non-negative.
We also note here that an alternative way for investigating term I is to use the Fourier

transform and Plancherel’s theorem; one has to use in this case that 1
2π ln |x| is the Green’s
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function of the Laplacian in two dimensions, with Fourier symbol 1
2π l̂n |x|(k) = − 1

|k|2 . Bounding

the cross term (the inner product) by Cauchy-Schwarz would follow similarly and one can reach
a Fourier space analogue of (26).

Given that the expression (16) for energy is exact, the considerations above lead to some
immediate conclusions. Consider parameters such that as > ac and bc > bs (A < 1 and B > 1;
the shaded region in Figure 2) and a corresponding equilibrium configuration (ρ̄1, ρ̄2) ∈ Fc. In
particular, (ρ̄1, ρ̄2) can be either the target or the overlap equilibrium with the lighter species
inside, as found to the right and to the left of the curve B = A−M

1−MA , respectively – see Figure
1. Assume further that (ρ̄1, ρ̄2) is a local minimizer with respect to perturbations of class B
(i.e., it satisfies (22)). Take now an arbitrary, compactly supported perturbation (ρ̃1, ρ̃2); by the
local minimizer condition, one has E1 ≥ 0. Furthermore, by (23), (25) and (26) above, we have
E2[ρ̃1, ρ̃2] ≥ 0. This implies that the equilibrium under consideration is in fact a global minimizer
in Fc (see Theorems 3.3 and 4.2 on how this observation is applied to the target and the overlap
equilibria with the lighter species inside).

For values of the parameters outside A < 1 and B > 1, establishing the sign of the second
variation is a challenging task. The reason lies in the very different expressions of the terms I and
II that comprise E2; the two terms are not immediately comparable and also, the logarithmic
potential is not sign-definite. Balancing term I and II to yield a definite sign for E2 seems
difficult and we do not pursue this direction here. The best we can do in such regimes, using
the variational method above, is to check for the sign of E1 (condition (22)) and restrict our
conclusions to local minimizers with respect to perturbations of class B.

To conclude, unless A < 1 and B > 1, we only establish in this paper, by the variational
approach, whether a specific equilibrium is a local minimizer with respect to perturbations
of class B. We do not make any conclusion concerning minimization with respect to class A
perturbations. To compensate for this limitation, we develop and use an alternative approach for
studying the stability of equilibria, based on linear analysis. We present now the main features
of this alternative approach.

2.3 Linear stability analysis

Class of perturbations and difference with variational approach. In (10) we identified
the values that the density can attain in a steady state. In particular, any steady state consists
of regions where (a) only one of the species has nonzero density, (b) the two species coexist, or
(c) none of the species is present. Within each of these subdomains, the density of each species
is a constant given by (10).

These properties of steady states are a specific consequence of the choice of potentials in (2).
The fact that the steady states are piecewise constant, makes us consider here perturbations in
which the densities remain constant, but the boundaries of the supports are deformed; cf. [15].
We consider deformations such that the total area enclosed remains unchanged (up to higher-
order contributions), due to the constraint of fixed total mass.

The perturbations considered here are completely different in spirit from the ones used in the
variational approach. The difference lies in the meaning of the word ‘small’, when we speak about
‘small perturbations’. Here, ‘small’ means that only close to the boundaries of the supports,
the density may change. That is, exactly at those points that were outside the support of the
unperturbed equilibrium, but now fall within the support of the perturbed state (upon alteration
of the boundaries), or vice versa. The change in density is O(1) at those points, according to
the discrete set of values allowed by (10). In the variational approach, perturbations change the
value of the density only slightly (cf. multiplication by ε in (13)), but on the other hand, are
allowed to be nonlocal in space (in particular, not necessarily close to the equilibrium’s support).

Mathematical description for a single species. To explain the essence of the method, we
will first consider the model for a single species so that we can avert some of the technicalities
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m = 1 m = 2 m = 3

Ωε(t)

Figure 3: Schematic drawing of the perturbations for modes m = 1, m = 2 and m = 3. The
unperturbed circular boundary is given in blue. The perturbed boundary Ωε(t) is indicated by
the dashed line. Node that the mode m is also an indication of the number of oscillations.

that arise for two species. In the single species model, the density is denoted by ρ and the
velocity is given by

v = −∇K ∗ ρ, with K(x) = −a ln |x|+ b

2
|x|2, (27)

where a, b > 0 are interaction parameters that correspond to repulsion and attraction, respec-
tively. For one species it is known [7, 26] that there is a steady state of constant density
ρ̄ := M̄ b/(π a) supported on a disk of radius R :=

√
a/b. This steady state is in fact a global

attractor. Here, M̄ :=
∫
ρ(x, t) dx is the total mass that is constant in time.

For mathematical convenience, we identify the domain R2 with the complex plane. We
will now consider small perturbations of the boundary of the support B(0, R) and investigate
how the boundary evolves in time. Similarly to [33], we consider the following perturbations
(corresponding to Fourier mode m ∈ N+):

p(θ, t) := Rei θ (1 + εN (t) cos(mθ) + i εT (t) sin(mθ)) , for 0 6 θ < 2π, (28)

where εN (t) and εT (t) are assumed to have small amplitude; they control the normal (‘N ’) and
transversal (‘T ’) deformation.

Let Ωε(t) denote the perturbed domain enclosed by p(θ, t); note that it depends on m.
Roughly speaking, due to perturbations (28), a number of “oscillations” are superimposed on
the unperturbed circular boundary. The number of oscillations is determined by the mode m.
An illustration for the first three modes is given in Figure 3. Here we have in mind the idea
that any arbitrary perturbation can be obtained by using its decomposition in Fourier modes
(28). Note that in the sequel, we will mostly omit to indicate explicitly the time dependence of
p, εN , εT and Ωε.

The area of Ωε is πR2 + 1
2πR

2(ε2
N + ε2

T ), independent of the mode m. For m > 2, the
perturbations in (28) preserve the centre of mass. For m = 1, we have that∫

Ωε
y dy = πR3εN +

1

4
πR3(ε2

N − ε2
T )(εN + εT ).

Recall that in this approach we consider perturbations from equilibrium such that the density
remains constant (value ρ̄) within the perturbed domain. To assess the stability, we investigate
the dynamics of a generic point on the perturbed boundary. Such a point we label by its angle
0 6 θ0 < 2π, and its evolution satisfies

d

dt
p(θ0, t) = v

(
p(θ0, t), t

)
. (29)
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It follows from (28) that

d

dt
p(θ0, t) = Rei θ0

(
ε′N (t) cos(mθ0) + i ε′T (t) sin(mθ0)

)
. (30)

For the specific potential in (27) it is possible to find an explicit expression for the linearized right-
hand side of (29). One finds that the O(1) terms vanish; this is a necessary condition for a steady
state. The ansatz (28) turns out to be self-consistent: we can divide the linearized equation by
R exp(i θ0) and match sine and cosine terms on both sides, to obtain a θ0-independent system
of the form

d

dt

[
εN
εT

]
= Qm

[
εN
εT

]
, (31)

where Qm is a 2 × 2 matrix that depends on the mode m. The eigenvalues of Qm are the
growth/decay rates of the perturbations, and negative eigenvalues of Qm indicate that the state
under consideration is stable for that particular mode m.

For the case of a single species, we will now obtain the matrices Qm (m = 1, 2, . . .) and inspect
their eigenvalues. We first need to obtain the velocity given in (27) at position x = p(θ0, t), and
thus we need to evaluate the convolution integral of −∇K against the density, that is constant ρ̄
inside the support Ωε(t). As the density is assumed to remain constant, one can take ρ̄ outside
the integral sign; consequently, to find the velocity at x ∈ R2 one has to evaluate∫

Ωε(t)
∇K(x− y) dy. (32)

By some abuse of notation, we used Ωε(t) ⊂ C for the integration domain in R2. Note that
the function v(·, t) in (29) depends itself on t because the domain of integration Ωε(t) in (32) is
time-dependent.

Due to the choice of potential in (27), the integral (32) can be written as a linear combination
of ∫

Ωε

x− y
|x− y|2

dy, and

∫
Ωε

(x− y) dy. (33)

The latter integral is relatively easy to evaluate exactly, using the aforementioned expressions
for the area and centre of mass of Ωε. The outcome is given in (92) of Appendix B, where
higher-order terms are omitted.2 We emphasize that the specific choice x = p(θ0, t) introduces
a dependence on εN and εT as well.

By Gauss’ theorem, the left-hand integral in (33) can be transformed into a contour integral
over the boundary ∂Ωε. We have∫

Ωε

x− y
|x− y|2

dy = −
∫
∂Ωε

ln |x− y| n̂ dS, (34)

where we used that (x− y)/|x− y|2 = −∇y ln |x− y|. The boundary of Ωε(t) is parameterized
by p(θ, t), for 0 6 θ < 2π. Consequently, n̂ dS can be expressed in terms of θ, εN and εT ; see
(93) in Appendix B.2

The resulting one-dimensional integral (see (94) in Appendix B) depends in a nonlinear way
on the small parameters εN and εT through the integration contour ∂Ωε and the fact that
x = p(θ, t). In our linear stability analysis, we expand the integrand in terms of the small
parameters, we omit higher-order terms and end up with integrals that can be evaluated. See
Appendix B for more details. The first-order approximation of (34) is given in (102).2

After dividing the linearized equation by R exp(i θ0) and matching sine and cosine terms, we
finally find the system (31) with

Q1 =

[
0 0
0 0

]
, and Qm =

[
−b M̄ 0
b M̄ 0

]
when m > 2.

2At this stage, the reader should simply disregard the indices j and ` that appear in Appendix B.
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For every m > 1 the matrix Qm has an eigenvalue 0 with eigenvector (0, 1)T . The cor-
responding solution of (31) is (εN (t), εT (t))T = (0, 1)T · exp(0 · t) ≡ (0, 1)T . This reflects a
tangential perturbation of the boundary which –to leading order– does not influence the shape.
Mode m = 1 has another eigenvalue 0, which corresponds to eigenvector (1,−1)T . The associ-
ated (constant) solution of (31) is (εN (t), εT (t))T = (1,−1)T · exp(0 · t) ≡ (1,−1)T and describes
for m = 1 a translation of the curve (28). The system is invariant under translations since it
conserves the centre of mass. For m > 2 the remaining eigenvalue −b M̄ is negative, implying
stability.

Two species and target states. Let us now outline the method for two species. In Figure
1 we identified several steady states numerically, among which is the one we called the ‘target’
(see also equilibria shown schematically in Figures 4 and 8). We will apply the linear stability
analysis to such equilibrium states. A short explanation of why we only consider these states
follows at the end of this section.

For a target, there are three circles of different radii that form the boundaries of the supports.
Each of these circles is perturbed to a time-dependent curve similar to (28):

pj(θ, t) := Rj e
i θ (1 + εj,N (t) cos(mθ) + i εj,T (t) sin(mθ)) , for 0 6 θ < 2π, (35)

where j ∈ {0, 1, 2}, and where εj,N (t) and εj,T (t) are assumed to have small amplitude. We use
the notation Ωε

j(t) for the perturbed domain enclosed by pj(θ, t); each of these domains looks
like the ones presented in Figure 3.

By assumption the densities are constant inside the supports (values ρ̄1 and ρ̄2). Conse-
quently, the velocity at x becomes a weighted sum over ` ∈ {0, 1, 2} of integrals of the type∫

Ωε`(t)
∇K(x− y) dy. (36)

Note for instance, that the integral over the (perturbed) annulus in the target state is obtained
by subtracting integrals like these, for two different values of `. The potential K in (36) either
denotes Ks or Kc. Due to the choice of these potentials in (2), the integral (36) can be written
in terms of ∫

Ωε`

x− y
|x− y|2

dy = −
∫
∂Ωε`

ln |x− y| n̂ dS, and

∫
Ωε`

(x− y) dy. (37)

To assess the stability of the configuration, we take a generic point on each of the three
boundaries, that is, we let x = pj(θ0, t), with j = 0, j = 1 or j = 2. At each of these points, we
compute and linearize the velocity, combining contributions of the form (37). The constants in
front of the terms depend on ρ̄1, ρ̄2, as, ac, bs and bc, and the exact details are configuration-
specific. These details are given in Sections 3.1.2 and 3.2.2.

Similarly to the exposition for a single species, we can find precise first-order expressions for
the integrals in (37); the results are presented in Appendix B. We remark that for the left-hand
integral in (37) the expression depends on whether x = pj(θ0, t) is inside, on or outside ∂Ωε

`(t).
Let ε(t) be the vector of six components formed with εj,N (t), εj,T (t), with j = 0, 1, 2.

Similarly to the single species case, from the system of linearized equations for d
dtpj(θ0, t) we

can deduce for each m ∈ N+ a system of the form

d

dt
ε = Qm ε, (38)

where Qm is a 6 × 6 matrix. The system (38) gives the evolution of ε(t) to leading order, and
the eigenvalues of the matrices Qm are the growth/decay rates corresponding to mode m. Hence
the stability of mode m can be inferred from the (signs of the) eigenvalues. In Sections 3.1.2 and
3.2.2 we find the matrices Qm and inspect their eigenvalues for two specific target configurations.
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Merits and limitations of this approach. The main advantage of this approach is the
dimensionality reduction. Specifically, by assuming that the perturbed states have constant
densities within their supports, the problem reduces to studying stability of the perturbed
boundaries – the evolution of the boundary curves depends only on the shape of the domains via
integrals of the form (36) and (37). In other words, we have self-contained evolution equations
for the boundaries of the perturbed domains, that allows a direct study of their stability.

The observation above brings immediate connections with similar approaches from related
literature. One such approach, which concerns directly the class of aggregation models consid-
ered in his paper, applies to stability of equilibria supported on one-dimensional curves [34, 37].
Another is the interface method used to study the stability of stationary bump solutions of
neural field models [27, 28, 18]. There, an interface is defined as a level set of the neural activity
field; in applications, this level set is taken at the firing threshold value. It can be shown that the
evolution of such an interface depends entirely on the neural field along the interface, and not
on field values away from the contour. Consequently, a stand-alone equation for the evolution
of the interface can be derived, and its linear stability investigated accordingly. Our approach,
in identifying stable/unstable Fourier modes of the aggregations’ boundaries, is very similar in
spirit to the stability of neural activity interfaces in the aforementioned studies.

In terms of limitations, we restricted ourselves to circle-shaped domain boundaries primarily
because we do not have an exact mathematical description for the other shapes appearing in
Figure 1. Such description is required to perform the analysis of this section, starting from a
modified form of (35).

Even if we did manage to find exact formulas for non-circular boundaries, it is not directly
clear if we could obtain results analogous to those in Appendix B. For circular boundaries, the
final result in Appendix B is based on integrals of the form (96) and (98), for which we have
exact expressions. For non-circular boundaries a different parameterization in θ of ∂Ωε

` is needed
in the first integral in (37). Linearization in ε of the boundary integral may again reduce the
problem to the evaluation of certain basic integrals; in general, exact solutions of such integrals
are not available, and numerical approximations would be needed.

Similar remarks can be made regarding our choice of potentials in (2). For generic potentials
the integral (36) can be transformed into an integral of K over the boundary ∂Ωε

` . Depending
on the potential, one may or may not find closed expressions for these line integrals or their
linearization in ε. Nevertheless, for either non-circular boundaries or generic potentials, provided
no analytical progress can be made, one may still be able to make progress numerically. For
instance, the matrices Qm in (38) could be approximated using quadrature rules in each entry.

We manage to analyze the target steady states by our linear perturbation method; cf. Sections
3.1.2 and 3.2.2. These states have the advantage that there is an O(1) distance between the
disk-shaped core and the annular region outside. Hence, for sufficiently small εj,N ’s and εj,T ’s,
the three perturbed boundaries do not interfere.

Now consider the ‘overlap’ states (e.g. the one shown for A = 0.5 and B = 1 in Figure
1). The boundaries of the supports are circular, and hence (28) could in principle still be used.
Examine however the boundary of the support of the lighter (red) species. For the heavier (blue)
species, this same circle is the separating curve between the region of coexistence with the red
species (central circle), and the outer annulus in which only the blue species is present. This
implies that a point x = pj(θ0) on this inner boundary needs to satisfy two evolution equations:
one dictated by the velocity of the blue species, and another dictated by the velocity of the
red species. For the overlap state, we performed the corresponding calculations, but obtained
two inconsistent equations. We did not manage to resolve this issue. It indicates however that
interfering boundaries (even if they are circles) may lead to difficulties in our method.

An extra complication lies in the fact that for every boundary that appears in a certain
steady state, system (38) contains two variables. Ultimately, (the signs of) the eigenvalues of
the matrix Qm in (38) need to be determined. For Qm larger than 3× 3, finding the eigenvalues
analytically is in general not possible, and one needs to rely on other techniques. In this paper for
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instance we inspected the coefficients of the characteristic polynomial to draw our conclusions.
An alternative is to use Gershgorin’s theorem (which however does not give a conclusive answer
about the sign in the cases treated in this paper) or eventually numerics.

2.4 Discrete model and numerical investigation of equilibria

There is a particle system formulation that follows immediately from (1) and this system of
ODE’s is the basis for the numerical investigations done in this paper. We consider a total
number of N particles, distributed over the two species, such that the two populations are

{x(1)
i }

N1
i=1 ⊂ R2 and {x(2)

i }
N2
i=1 ⊂ R2, respectively, with N1 +N2 = N .

The discrete analogue of model (1) is given by the following system of ODE’s:

dx
(1)
i

dt
= −M1

N1

N1∑
j=1
j 6=i

∇Ks

(
x

(1)
i − x

(1)
j

)
− M2

N2

N2∑
j=1

∇Kc

(
x

(1)
i − x

(2)
j

)
, i = 1, . . . , N1, (39a)

dx
(2)
i

dt
= −M1

N1

N1∑
j=1

∇Kc

(
x

(2)
i − x

(1)
j

)
− M2

N2

N2∑
j=1
j 6=i

∇Ks

(
x

(2)
i − x

(2)
j

)
, i = 1, . . . , N2. (39b)

Note that the four summations in the right-hand sides correspond (except for the omission of the
self-interaction term) to convolutions of the interaction potentials with the empirical measures
µk := 1/Nk

∑Nk
i=1 δx(k)i

.

We investigate the steady states of the particle system numerically, by performing long-time
simulations of (39) starting from random initial data. The steady states of the particle system
are expected to capture the steady states of the PDE model (1). Particle simulations are in fact
the main tool used to study numerically equilibria of the one species model [2, 34, 40, 26].

3 Target equilibrium

In this section we investigate the radially symmetric state where the two species are supported
concentrically on a disk and an annulus, respectively. See the left-hand picture for parameter
values (A,B) = (3, 3.5) in Figure 1. We also consider this state with the heavy and light species
interchanged. Both of them we call “targets”.

3.1 Lighter species inside

Consider the target configuration sketched in Figure 4, where the heavier species 1 is supported
on an annular region R1 < |x| < R0, and the lighter species 2 is supported on a disk of radius
R2, with R2 ≤ R1 ≤ R0. Following simple calculations, the radii are given by

R2
2 =

asM2

bcM1 + bsM2
, R2

1 =
acM2

bsM1 + bcM2
, R2

0 =
asM1 + acM2

bsM1 + bcM2
. (40)

Within the respective (non-overlapping) supports Ω1 = {R1 < |x| < R0} and Ω2 = {|x| < R2},
the equilibrium densities are (cf. (10)):

ρ̄1 =
bsM1 + bcM2

πas
, ρ̄2 =

bcM1 + bsM2

πas
. (41)

For consistency with the target solution ansatz, (A,B) has to lie in D3 ∪D4 ∪D5.
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R0

R1R2

Species 2

Species 1

Figure 4: Target equilibrium, with species 1 supported on the annular region R1 < |x| < R0,
and (the lighter) species 2 supported on a disk of radius R2.

3.1.1 Variational approach

We now proceed to investigate whether the target equilibrium is a local minimizer with respect
to class B perturbations, cf. (22). The following elementary calculations will be needed in the
sequel: ∫

|y|<R
ln |x− y|dy =

{
π
2 |x|

2 + πR2 lnR− π
2R

2 if |x| < R

πR2 ln |x| if |x| > R,
(42)

and ∫
|y|<R

x− y
|x− y|2

dy =

{
πx if |x| < R

πR2 x
|x|2 if |x| > R.

(43)

Note in fact that (43) can be derived from (42) by differentiation.
Calculate ∇Λ1 from (19a), with the potentials given by (2) and the equilibrium densities

given by (41). Using (42) and (43) one can check indeed that ∇Λ1(x) = 0 in R1 < |x| < R0,
hence Λ1(x) is constant in the support Ω1 (see (21)). The calculation of ∇Λ1(x) = Λ′1(|x|)x/|x|
(note the radial symmetry) outside the support Ω1 yields the following:

Λ′1(|x|)
|x|

=


bsM1 + bcM2 − ac

as
(bcM1 + bsM2) if |x| < R2

bsM1 + bcM2 − acM2/|x|2 if R2 < |x| < R1

bsM1 + bcM2 − (asM1 + acM2)/|x|2 if |x| > R0.

(44)

Using the notations (3), Λ′1 in |x| < R2 can be written as:

Λ′1(|x|) = bsM2(M +B −A(BM + 1))|x|, in |x| < R2.

For all (A,B) in D3 ∪ D4 ∪ D5 (see Figure 2), which is the entire parameter space where the
assumed target equilibrium exists, the expression above is negative. Indeed, for such (A,B),
B > (M −A)/(MA− 1) (note that MA− 1 > 0), and hence, ABM −B −M +A > 0.

In R2 < |x| < R1, Λ1(|x|) is also decreasing, as can be seen from the simple estimate below:

bsM1 + bcM2 −
acM2

|x|2
< bsM1 + bcM2 −

acM2

R1
2︸ ︷︷ ︸

=0 by (40)

.

Finally, in |x| > R0, Λ1(|x|) is increasing, as

bsM1 + bcM2 −
asM1 + acM2

|x|2
> bsM1 + bcM2 −

asM1 + acM2

R2
0︸ ︷︷ ︸

=0 by (40)

.
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In summary, for all (A,B) in the relevant region D3 ∪ D4 ∪ D5, Λ1 satisfies (22); for an
illustration see Figure 5.

We now calculate ∇Λ2 from (19b). By (2) and (41), also using (42) and (43) one can check
indeed that ∇Λ2(x) = 0 in |x| < R2, hence Λ2(x) is constant in the support Ω2 (see (21)). The
calculation of ∇Λ2(x) = Λ′2(|x|)x/|x| outside the support Ω2 yields:

Λ′2(|x|)
|x|

=


πasρ̄2(1−R2

2/|x|2) if R2 < |x| < R1

πasρ̄2(1−R2
2/|x|2)− πacρ̄1(1−R2

1/|x|2) if R1 < |x| < R0

bcM1 + bsM2 − (acM1 + asM2)/|x|2 if |x| > R0.

(45)

From (45) we infer that Λ2 is increasing in the radial direction in the region R2 < |x| < R1.
On the other hand, Λ′2 can become zero in R1 < |x| < R0, and consequently Λ2 can decrease in
this region. Let us investigate this scenario. The zero of Λ′2 occurs at

|x|2 =
πacρ̄1R

2
1 − πasρ̄2R

2
2

πacρ̄1 − πasρ̄2
. (46)

For consistency, the expression above needs to be positive and also, it has to lie in the annular
region (i.e., R2

1 < |x|2 < R2
0). By using (41) and notations (3), the denominator in (46) reduces

to:
πacρ̄1 − πasρ̄2 = M2bs(M(A−B) +AB − 1).

Recall that the target solution only exists for parameters (A,B) in the region D3 ∪D4 ∪D5.
It is immediate to show that the expression above is negative in D5 and positive in D3 ∪ D4.
Consider first the case when it is negative, i.e., (A,B) ∈ D5. In this case, the zero of Λ′2 from
(46) does not lie in the relevant region R1 < |x| < R0. In other words, for (A,B) ∈ D5, Λ′2 does
not change sign in the annular region and remains positive throughout (one can check easily for
instance that Λ′2(R1) > 0).

For (A,B) ∈ D3 ∪ D4, where the denominator in (46) is positive, the location of the zero
given by (46) is larger than R1 for all (A,B). By requiring that it is also less than R0, we arrive
after some elementary calculations at the following condition:

(M2
1 −M2

2 )(A−B) > 0.

Since M1 > M2, this reduces simply to A > B. Hence, only for (A,B) ∈ D3, Λ′2 can have a zero
in the annular region between R1 and R0.

To summarize the finding above, for (A,B) ∈ D4 ∪ D5, Λ′2(|x|) does not change sign and
remains positive in R1 < |x| < R0. For (A,B) ∈ D3, Λ2 changes monotonicity in the annular
region, and once it changes monotonicity, it stays decreasing through the rest of R1 < |x| < R0

– see Figure 5 for an illustration. One can check in fact that indeed, at |x| = R0,

Λ′2(R0) =
M2

1 −M2
2

M1as +M2ac
asbs(B −A)R0 < 0 for (A,B) ∈ D3.

In |x| > R0, it can be shown easily that Λ2 remains strictly increasing for (A,B) ∈ D4 ∪D5.
Consequently, combining with the findings above, the condition for Λ2 in (22) holds for all
parameter values (A,B) ∈ D4 ∪D5 – see Figure 5(a). For (A,B) ∈ D3 however, it remains to
be checked whether Λ2 drops in |x| > R0 below λ2, the value it has on the support. From (45),
one can infer immediately that Λ2 changes monotonicity (again) in |x| > R0, at

|x|2 =
acM1 + asM2

bcM1 + bsM2
> R2

0 for (A,B) ∈ D3. (47)

Denote by λm the value of Λ2 at the minimum point above – see Figures 5(b) and (c). Provided
λm < λ2, then the condition for Λ2 in (22) fails, and the target solution is not a minimizer. By
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direct calculations (see Appendix A for details) we find that λm < λ2 for parameters (A,B) that
satisfy:

BM + 1

B +M
<
AM + 1

A+M
· (1 +AM)

1
AM ·

(
1 +

M

A

)− A
M

=: f(A). (48)

By numerical inspection, 1
M < f(A) < M , for A > 1, and hence (48) can be written explicitly

as

B <
Mf(A)− 1

M − f(A)
. (49)

Figure 6 shows (shaded area) the subset of D3 where (49) holds; for parameters (A,B) in
this region, the target equilibrium is not a minimizer. For such (A,B) a typical profile of Λ2

is illustrated in Figure 5(c). We also note that as M increases to infinity, the subset seems to
approach the entire domain D3.

For (A,B) in D3 outside the shaded region, (49) is violated and hence, λm > λ2 and (22)
holds; a typical profile of Λ2 in this case is shown in Figure 5(b).
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Figure 5: Typical profiles of Λ1 and Λ2 corresponding to the target with lighter species inside.
The profiles have been shifted vertically for a better visualization. (a) (A,B) in D4 ∪ D5, (b)
(A,B) in the subset of D3 where (22) holds (λm > λ2), (c) (A,B) in D3 where (22) fails
(λm < λ2) – see also shaded areas in Figure 6. In (a) and (b) the target is a local minimizer
with respect to perturbations of class B. The equilibrium is not a minimizer in (c) – see also
Remark 3.1.

Remark 3.1. With regard to Figure 5(c), we note that Λ2(x) ≥ λ2 (see (22)) is satisfied for x in
a neighbourhood of Ω2 (i.e., for |x| near R2). Consequently, such an equilibrium is a minimizer
with respect to redistributions of mass within a (certain) neighbourhood of the equilibrium’s
support; such equilibria are referred in [5] as swarm minimizers. For this reason, in the formal
variational approach from [2] this equilibrium would be a local minimizer in the ∞-Wasserstein
topology, but not in the 2-Wasserstein topology.

To conclude, we have derived:

Proposition 3.2 (Local minimum). The target equilibrium in Figure 4 is a local minimizer in
F with respect to perturbations of class B for all values of (A,B) in D4 and D5. Moreover, it is
also a local minimizer with respect to such perturbations in the subset of D3 where (49) is false
(unshaded areas in Figure 6).

We note that for general parameter values (A,B) we have not investigated perturbations of
class A because of the difficulties pointed out in Section 2.2. Nevertheless, by the considerations
made in Section 2.2, the second variation of the energy is positive for both classes of perturbations
when as > ac and bc > bs (or equivalently, A < 1 and B > 1) – see (23), (25) and (26)).
Also recall that the considerations there were made for compactly supported perturbations
(minimization in Fc ⊂ F). From this observation we infer:
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Figure 6: Shaded areas represent the subsets of D3 where (49) holds, for (a) M = 2 and (b)
M = 50. For parameters in this region, the target equilibrium with the lighter species inside is
not a local minimizer with respect to perturbations of class B. Note that the regions where the
target is not a minimizer tends to cover the entire D3 as M →∞.

Theorem 3.3 (Global minimum). The target equilibrium in Figure 4 is a global minimizer in
Fc (with respect to both class A and class B perturbations) for all (A,B) in D5 with A < 1 (note
that B > 1 in D5); i.e. in the intersection of D5 with the shaded region in Figure 2.

Despite being derived by unsophisticated, elementary methods, Theorem 3.3 is a very strong
result that illustrates the high relevance of this target equilibrium. Regarding Proposition 3.2,
our numerical investigations of the particle system (39) suggest that the target equilibrium is
only stable in D4∪D5. Some indication that this state is unstable in D3 is given by the fact that
the region (49) where the target is not a minimizer tends to cover the whole of D3 as M →∞.
Although we do not have the tools to show it, we conjecture that this state is a local minimizer
with respect to perturbations of class A in D4 ∪ D5, but not in D3. It turns out that linear
stability analysis supports this claim, as shown in the next section.

3.1.2 Linear stability analysis

In this section we derive the following result:

Theorem 3.4 (Linear stability). The target configuration in Figure 4 is a linearly stable steady
state only for (A,B) ∈ D4 ∪D5.

We first have to obtain the evolution equations on the boundaries for this specific configura-
tion. We apply perturbations (28) to each of the three boundaries and follow the lines of Section
2.3 to arrive at a linearized system (38). To that aim, we have to find (linearized) expressions
for the right-hand sides in

d

dt
p0(θ0, t) = v1(p0(θ0, t)),

d

dt
p1(θ0, t) = v1(p1(θ0, t)), and

d

dt
p2(θ0, t) = v2(p2(θ0, t)). (50)

These right-hand sides involve integrals of the forms (36) and (37). For the outer (perturbed)
annulus we have the difference of two such integrals, since the support of species 1 is Ωε

0(t)\Ωε
1(t).
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For instance, we have that

d

dt
p0(θ0, t) = as ρ̄1

∫
Ωε0(t)

x− y
|x− y|2

dy − bs ρ̄1

∫
Ωε0(t)

(x− y) dy

−

as ρ̄1

∫
Ωε1(t)

x− y
|x− y|2

dy − bs ρ̄1

∫
Ωε1(t)

(x− y) dy

+ ac ρ̄2

∫
Ωε2(t)

x− y
|x− y|2

dy − bc ρ̄2

∫
Ωε2(t)

(x− y) dy,

with x = p0(θ0, t). Expressions (up to higher-order terms) of the appearing integrals are given
in Appendix B. We use (30) for the left-hand sides, divide each linearized equation in (50) by
Rj exp(i θ0) and match sine and cosine terms on both sides of the equation. The result is six
equations that are independent of the choice of θ0. Together, for each m ∈ N+ these form a
system (38), where we denote ε := (ε0,N , ε0,T , ε1,N , ε1,T , ε2,N , ε2,T )T .

As anticipated in Section 2.3, we indeed verified using (40) and (41) that the O(1) terms
have zero contribution; this is a necessary condition for the target ε = 0 to be a steady state.

The matrix Qm is given by

Q1 :=



−as π ρ̄1 + bsρ̄1πR
2
0 0 −asρ̄1π

(
R1

R0

)3

− bsρ̄1π
R3

1

R0
0

M2acR2

R3
0

+
M2bcR2

R0
0

as π ρ̄1 − bs ρ̄1 π R2
0 0 −as π ρ̄1

(
R1

R0

)3

+ bs ρ̄1 π
R3

1

R0
0

M2 acR2

R3
0

− M2 bcR2

R0
0

−asπρ̄1
R0

R1
+ bsρ̄1π

R3
0

R1
0 −as π ρ̄1 − bsρ̄1πR2

1 0
M2acR2

R3
1

+
bcM2R2

R1
0

asπρ̄1
R0

R1
− bsρ̄1π

R3
0

R1
0 −asπρ̄1 + bsπρ̄1R

2
1 0

M2acR2

R3
1

− M2bcR2

R1
0

−acπρ̄1
R0

R2
+ bcπρ̄1

R3
0

R2
0 acπρ̄1

R1

R2
− bcρ̄1π

R3
1

R2
0 −M1 bc 0

acπρ̄1
R0

R2
− bcρ̄1π

R3
0

R2
0 −acπρ̄1

R1

R2
+ bcρ̄1π

R3
1

R2
0 M1 bc 0


(51)

for mode m = 1, and for any other mode m > 2 by

Qm :=



−as π ρ̄1 0 −as π ρ̄1
(
R1

R0

)m+2

0 ac π ρ̄2

(
R2

R0

)m+2

0

as π ρ̄1 0 −as π ρ̄1
(
R1

R0

)m+2

0 ac π ρ̄2

(
R2

R0

)m+2

0

−asπρ̄1
(
R1

R0

)m−2

0 −as πρ̄1 0 ac π ρ̄2

(
R2

R1

)m+2

0

asπρ̄1

(
R1

R0

)m−2

0 −asπρ̄1 0 ac π ρ̄2

(
R2

R1

)m+2

0

−acπρ̄1
(
R2

R0

)m−2

0 acπρ̄1

(
R2

R1

)m−2

0 −asπρ̄2 0

acπρ̄1

(
R2

R0

)m−2

0 −acπρ̄1
(
R2

R1

)m−2

0 asπρ̄2 0


. (52)

The signs of the eigenvalues of Qm determine the stability of mode m > 1. The essence of the
matrices Qm is represented by 3× 3 matrices consisting of only those entries of Qm that appear
in odd rows and odd columns. This is closely related to what happens when one computes
det(Qm − λ I) by a cofactor expansion with respect to the second, fourth and sixth row.

For mode m = 1, the characteristic polynomial only has terms of order 4 and higher. Hence,
four eigenvalues are zero. The remaining two eigenvalues can be found explicitly using the
quadratic formula. They are real and one of them is always negative. The other one is negative if
and only if B > A. Recall that this target equilibrium only exists in D3∪D4∪D5. Consequently,
mode m = 1 is unstable in the region D3, and stable in D4 ∪D5.

The eigenvectors corresponding to zero eigenvalues are

(0, 1, 0, 0, 0, 0)T , (0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 0, 1)T , and(
1

R0
,− 1

R0
,

1

R1
,− 1

R1
,

1

R2
,− 1

R2

)T
.
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Figure 7: The boundaries of the regions Um for m = 1, 2, 3, 4. Note that U4 ⊂ U3 ⊂ U2 ⊂ U1.

The first three correspond to tangential perturbations of a single one of the boundaries which
–to leading order– does not change its shape. The latter eigenvector corresponds to translation
of all three boundaries simultaneously over the same distance. Such translations constitute a
translation of the total centre of mass, under which the system is invariant; see (6). A prefactor
Rj is present in (35), hence each component of the eigenvector contains an appropriate factor
1/Rj so that each boundary is translated over the same j-independent distance.

To further asses the stability in D4 ∪ D5, we are required to investigate the eigenvalues
for all higher-order modes. For general m > 2 the characteristic polynomial only has terms
of order three and higher. Hence there are three eigenvalues zero, corresponding to tangential
perturbations of one of the boundaries.

Given the fact that there are three eigenvalues zero, it is immediate to find the third-order
polynomial P of which the remaining eigenvalues are roots. Call these roots nontrivial eigen-
values. Careful inspection of the sign of the constant term of P , yields that there is at least one
(real and) positive eigenvalue if (A,B) ∈ Um, with

Um :=

{
(A,B) ∈ D3 ∪D4 ∪D5 : 1 < A < M

m
m−2 and 0 < B <

MA
2
m −A

MA−A
2
m

}
.

Here, it is understood that M
m
m−2 =∞ for m = 2, and U2 is {1 < A <∞, 0 < B < 1} ∩ (D3 ∪

D4 ∪D5). Define U1 := D3, the region where mode m = 1 is unstable. For n > m > 1 it holds
that Un ⊂ Um. See Figure 7 for an indication of the boundaries of the regions Um and the way
in which Um+1 is contained in Um.

Let Sm be the complement of Um in D3∪D4∪D5 (excluding the boundary). For (A,B) ∈ Sm,
if we evaluate the polynomial P at appropriate negative values, we can identify three sign
changes, hence P has three real and negative roots. Consequently, all (nontrivial) eigenvalues of
Qm are real and negative in Sm for any m > 2. Thus mode m > 2 is stable in Sm and moreover
we have that Sm ⊂ Sn if n > m > 1. We showed before that mode m = 1 is stable if and only
if (A,B) ∈ D4 ∪ D5 =: S1. Hence we have showed the stability of the target (lighter species
inside) for all modes m > 1 provided that (A,B) ∈ S1 = D4 ∪D5.

3.2 Heavier species inside

In this equilibrium state the (heavier) species 1 is supported in the disk |x| < R1, and the
(lighter) species 2 is supported on the annulus R2 < |x| < R0, with R1 ≤ R2 ≤ R0 – see Figure
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8.
Calculations lead to

R2
1 =

asM1

bsM1 + bcM2
, R2

2 =
acM1

bcM1 + bsM2
, R2

0 =
acM1 + asM2

bcM1 + bsM2
. (53)

The equilibrium densities are given by (41) (cf. (10)). For consistency with the solution ansatz,
(A,B) has to lie in D2 ∪D3 ∪D4.

R0

R2
R1

Species 1

Species 2

Figure 8: Target equilibrium, with species 1 supported on a disk of radius R1, and (the lighter)
species 2 supported on the annular region R2 < |x| < R0.

3.2.1 Variational approach

The calculations of Λ′1 and Λ′2 mirror the ones in Section 3.1.1. The results are:

Λ′1(|x|)
|x|

=


πasρ̄1(1−R2

1/|x|2) if R1 < |x| < R2

πasρ̄1(1−R2
1/|x|2)− πacρ̄2(1−R2

2/|x|2) if R2 < |x| < R0

bsM1 + bcM2 − (asM1 + acM2)/|x|2 if |x| > R0,

(54)

and

Λ′2(|x|)
|x|

=


bcM1 + bsM2 − ac

as
(bsM1 + bcM2) if |x| < R1

bcM1 + bsM2 − acM1/|x|2 if R1 < |x| < R2

bcM1 + bsM2 − (acM1 + asM2)/|x|2 if |x| > R0.

(55)

Also note that Λ′1 and Λ′2 vanish on the respective supports of ρ̄1 and ρ̄2: {|x| < R1} and
{R2 < |x| < R0}; cf. (21).

It is immediate to check that Λ2 (corresponding to the lighter species) for all (A,B) in the
relevant region D2 ∪D3 ∪D4 satisfies (22).

As in Section 3.1.1, the calculations for the heavier species are slightly more involved and
do not always lead to the minimization condition (22). From (54), one concludes easily that
Λ′1(|x|) > 0 in R1 < |x| < R2. However, Λ′1 can become zero in R2 < |x| < R0, and hence Λ1

can decrease in this region. The zero of Λ′1 occurs at

|x|2 =
πasρ̄1R

2
1 − πacρ̄2R

2
2

πasρ̄1 − πacρ̄2
=

M1as(1−A2)

M2bs(M +B −A(BM + 1))
, (56)

The denominator of (56) is positive in D2 and negative in D3 ∪D4. Consider first the case
when it is positive, i.e., (A,B) ∈ D2. Since the denominator is positive, the numerator has to
be positive as well (i.e., A < 1). It is then a simple exercise to show that the zero of Λ′1 from
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(56) does not lie in the relevant region R2 < |x| < R0. Hence, for (A,B) ∈ D2, Λ′1 does not
change sign in the annular region and remains positive throughout (as a check we found indeed
that Λ′1(R0) > 0).

For (A,B) ∈ D3 ∪ D4, where the denominator in (56) is negative, the numerator is also
negative (as A > 1 there). Also, the location of the zero given by (56) is larger than R2 for all
(A,B) ∈ D3 ∪D4. We require that it is also less than R0 and we arrive after some elementary
calculations to the following condition:

(M2
1 −M2

2 )(A−B) < 0.

Since M1 > M2, to have a zero of Λ′1 in the annular region one needs A < B, i.e., (A,B) ∈ D4.
Otherwise, for (A,B) ∈ D3, Λ′1 does not change sign and remains positive in the annular region.

Finally, in |x| > R0, it can be shown that Λ1 remains strictly increasing for (A,B) ∈ D2∪D3,
where A > B. Combined with the findings above (including the calculations for Λ2), we infer
that (22) holds for all parameter values (A,B) ∈ D2 ∪D3.

On the other hand, for (A,B) ∈ D4, Λ1 changes monotonicity in |x| > R0, at

|x|2 =
asM1 + acM2

bsM1 + bcM2
> R2

0 for (A,B) ∈ D4. (57)

If Λ1 evaluated at the minimum point above drops below λ1, then the condition for Λ1 in
(22) fails, and this target solution is not a minimizer. We do not present these calculations, we
only list the end result. Following calculations similar to the other target equilibrium (see (48)),
we find that the target with the heavier species inside is not a local minimizer provided

B +M

BM + 1
<

A+M

AM + 1
·
(

1 +
A

M

)M
A

·
(

1 +
1

AM

)−AM
. (58)

The inequality (58), which can be rearranged to be explicit in B, describes a subset of D4 which
grows with the mass ratio M . For the rest of (A,B) ∈ D4, λm > λ1 and hence (22) holds. Thus,
we have derived:

Proposition 3.5. The target equilibrium with the heavier species inside is a local minimizer in
F with respect to class B perturbations for all (A,B) ∈ D2 ∪D3 and for (A,B) ∈ D4 for which
(58) is violated.

In our numerical investigations of the particle system (39) we never observed the target
equilibrium from Figure 8 as a numerical steady state, and hence we conjecture that it is not
stable. In particular, given Proposition 3.5 we conjecture that this state is unstable with respect
to class A perturbations in D2, D3 and (the indicated part of) D4, although we do not have
the means to prove this. But, as we show in the next section, the linear stability analysis is in
agreement with this claim.

3.2.2 Linear stability analysis

In this section we demonstrate the following result:

Theorem 3.6 (Linear instability). The target configuration in Figure 8 is linearly unstable for
any set of parameters (A,B) for which this equilibrium exists, i.e., for any (A,B) ∈ D2∪D3∪D4.

For this steady state, we can obtain the corresponding matrices Qm (for m > 1) in (38)
directly from (51) and (52) by writing those matrices fully in terms of as, ac, bs, bc, M1 and
M2 and subsequently interchanging M1 and M2. These matrices correspond to the system of
ODE’s (38) where in fact ε := (ε0,N , ε0,T , ε2,N , ε2,T , ε1,N , ε1,T )T is reordered, in agreement with
the ordering of R0, R2 and R1 in Figure 8. Alternatively, we could have derived these matrices
starting from the building blocks in Appendix B, analogously to what we did in Section 3.1.2.
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The characteristic polynomial of Q1 has only terms of order four and higher. Hence, there are
four eigenvalues zero; cf. Section 3.1.2. The other two eigenvalues can be calculated explicitly,
and these are real. One of them is always negative and the other one is negative if and only if
B > A; i.e. for (A,B) ∈ D4. Hence, this state is unstable in D2 ∪D3 where one eigenvalue is
positive.

For mode m = 2, we find that the characteristic polynomial has terms only of order three and
higher. There are three eigenvalues zero, and the other three nontrivial eigenvalues are roots of
some polynomial P̃ (which we can find explicitly). The constant term of this polynomial equals
the product of the three nontrivial eigenvalues, and we observe that there is at least one positive
eigenvalue if this constant is positive. This argument holds when all eigenvalues are real and
also when two eigenvalues are complex conjugates. Here, it is thus not even necessary to ver-
ify whether the roots of the characteristic polynomial are real. One can check that the product
of the nontrivial eigenvalues is positive if B > 1. Consequently, mode m = 2 is unstable if B > 1.

We previously concluded that mode m = 1 is unstable in D2 ∪ D3. It follows that modes 1
and 2 are never stable simultaneously, and hence this target steady state must be unstable for
any choice of (A,B) ∈ D2 ∪D3 ∪D4.

3.3 Numerical illustration of the unstable modes

3.3.1 Target: lighter species inside

In Section 3.1 we derived that the target state (with the lighter species inside) is stable in D4∪D5.
Mode 1 is unstable in region D3, while mode 2 is unstable for B < 1. The instability regions for
the higher-order modes are such that for mode m this region is a subset of the instability region
for mode m− 1. See Section 3.1.2 for the full details.

Here, we further illustrate the instability. First we run a particle system of 200 particles
with M = 2 and (A,B) = (3, 3.5). The system approaches the target steady state shown in
Figure 1 at the top. Next we choose two pairs of parameter values such that 1 < B < A, and
B < 1, respectively. Specifically, we take (A,B) = (3, 2) and (A,B) = (3, 0.75). For the latter
parameter pair, mode 2 is unstable, but mode 3 and higher are still stable.

We start from the target particle configuration that follows from the numerics for (3, 3.5). To
obtain the correct target ansatz for our new choice of parameters (A,B), we subsequently rescale
this configuration using (40). We then perform a numerical run of (39), both for (A,B) = (3, 2)
and for (A,B) = (3, 0.75). Some snapshots are shown in Figure 9. As expected, for (A,B) =
(3, 2) a mode 1 instability occurs (this is the only unstable mode), shifting the red core outside.
For (A,B) = (3, 0.75), when modes 1 and 2 are both unstable, we again observe a mode 1
instability. Apparently, mode 1 dominates mode 2 here (larger eigenvalue in the linearized
system of Section 3.1.2).

3.3.2 Target: heavy species inside

In Section 3.2 we focussed on the target state when the heavy species is inside the light species.
We showed that is unstable. Hence we do not observe it numerically. In particular, mode 1
is unstable in region D2 ∪ D3; that is, for B < A. We also showed that mode 2 is unstable if
B > 1. See Section 3.2.2.

These different modes of instability will be illustrated here. We again design a particle
system of 200 particles with M = 2 and now we pick three pairs of parameter values such that
first B > A, next 1 < B < A, and finally B < 1. We construct a target configuration with the
heavy species inside and with radii according to (53) to resemble the target ansatz. Since the
target with the heavy species inside is unstable, it does not appear as a steady state in numerical
simulations. Therefore, some manipulation is needed to obtain the target that we use as initial
configurations. We omit further details.
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A = 3
B = 2

t = 0 t = 16.5 t = 19 t = 50

A = 3
B = 0.75

t = 0 t = 6.6 t = 7.4 t = 50

Figure 9: Steady states that arise, starting from the target configuration with the lighter species
inside. Apparently, for B < A, the mode 1 instability is dominant in the transition into a
non-radially symmetric steady state. This is even the case when mode 2 is also unstable (see
the plots for B = 0.75).

In Figure 10 we show snapshots of the time evolution for (A,B) = (3, 3.5), and (A,B) =
(3, 2), and (A,B) = (3, 0.75). In each case we start from the (properly scaled) target with the
heavy species inside.

For (A,B) = (3, 3.5), mode 2 is unstable, while mode 1 is stable. In the top row of Figure 10
we clearly see the mode 2 instability that elongates the blue core and triggers the system to evolve
into a non-radially symmetric state. For (A,B) = (3, 2) both modes 1 and 2 are unstable. The
middle row of Figure 10 shows that apparently the mode 2 instability is dominant. The steady
state that follows resembles the one in the top row. Mode 2 is stable for (A,B) = (3, 0.75), but
mode 1 is not. In the bottom row of Figure 10 the instability of mode 1 is visible as a translation
of the blue core.

Note that the steady state on the bottom row of Figure 10 is the same as the steady state
at the bottom of Figure 9. However, the former arises due to a translation (mode 1 instability)
of the blue core (species 1), while the latter arises due to a mode 1 instability of the red core
(species 2).

The steady states obtained in Figures 9 and 10 were previously illustrated in Figure 1.

4 Overlap equilibrium

In this section we investigate the radially symmetric state where the two species are supported
on concentric disks and thus there is a region in which the two species coexist (overlap) – see
the picture for parameter values (A,B) = (0.5, 1) in Figure 1. We also consider two versions of
this state: one where the coexistence region is surrounded by a ring of the heavier species (i.e.
lighter species inside), and one with the heavy and light species interchanged (heavier species
inside).

For overlap equilibria we were not able to develop a linear stability analysis as for the target
solution (Sections 3.1.2 and 3.2.2). The difficulties are the ones pointed out in Section 2.3: at the
boundary at R2 the velocities of both species 1 and species 2 need to be taken into consideration.
That is,

d

dt
p2(θ0, t) = v1(p2(θ0, t)) and

d

dt
p2(θ0, t) = v2(p2(θ0, t))

should be satisfied. These two equations simultaneously lead to inconsistencies in our approach.
For this reason the considerations in this sections are limited to the variational approach.
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A = 3
B = 3.5

t = 0 t = 6.5 t = 7.5 t = 50

A = 3
B = 2

t = 0 t = 19.5 t = 23 t = 50

A = 3
B = 0.75

t = 0 t = 16 t = 18 t = 50

Figure 10: Steady states that arise, starting from the target configuration with the heavy species
inside. For B > 1, mode 2 is either unstable while mode 1 is not (for B > A, see the plots for
B = 3.5), or it apparently dominates mode 1, that is also unstable (for 1 < B < A, see the plots
for B = 2). For B < 1, mode 1 is unstable, while mode 2 is stable (see the plots for B = 0.75).
Apparently the instability is driven by modes 1 or 2, and not by the higher-order modes.

4.1 Lighter species inside

In this equilibrium state species 1 and 2 are supported in disks of radii R1 and R2, respectively,
with R2 < R1 – see Figure 11. Within |x| < R2, where the two species coexist, the equilibrium
densities are (see (10)):

ρ̄1 =
(asbs − acbc)M1 + (asbc − acbs)M2

π(a2
s − a2

c)
, ρ̄2 =

(asbc − acbs)M1 + (asbs − acbc)M2

π(a2
s − a2

c)
. (59)

In the annular region R2 < |x| < R1, only species 1 is present, with equilibrium density (also
see (10)):

ρout
1 =

bsM1 + bcM2

πas
. (60)

By immediate calculations, the radii of the two disks are found to be

R2
1 =

asM1 + acM2

bsM1 + bcM2
, R2

2 =
(a2
s − a2

c)M2

(asbc − acbs)M1 + (asbs − acbc)M2
. (61)

Together with the consistency condition R2 < R1, it can be shown that the overlap equi-
librium above exists for (A,B) ∈ D3 ∪ D6. Note that A > B in D3, while in D6 one has
A < B.

Calculate ∇Λ1 from (19a), with equilibrium densities given by (59) and (60). Using (43) one
can check indeed that ∇Λ1(x) = 0 in |x| < R2 and R2 < |x| < R1, hence Λ1(x) is constant in
the support of ρ̄1 (see (21)). Outside the support, in |x| > R1, one finds

Λ′1(|x|) =
(
(bsM1 + bcM2)|x|2 − (asM1 + acM2)

)
/|x|. (62)
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R1

R2

Species 1 & 2

Species 1 only

Figure 11: Overlap equilibrium, with species 1 and 2 coexisting on a disk of radius R2, and (the
heavier) species 1 also being present in the annular region R2 < |x| < R1.

From (62) and the expression of R1 in (61), we conclude that Λ1 is radially increasing in |x| > R1,
and hence, for all (A,B) in the relevant region D3 ∪D6, Λ1 satisfies (22).

We now calculate ∇Λ2 from (19b). First, one can check that ∇Λ2(x) = 0 in |x| < R2, hence
Λ2(x) is constant in the support of ρ̄2; cf. (21). Then, the calculation of ∇Λ2(x) = Λ′2(|x|)x/|x|
outside the support yields:

Λ′2(|x|)
|x|

=

{
bcM1 + bsM2 − (acM1 + asM2)/|x|2 − πacρout

1 (1−R2
1/|x|2) if R2 < |x| < R1

bcM1 + bsM2 − (acM1 + asM2)/|x|2 if |x| > R1.

(63)
Consider case (A,B) ∈ D6 first. By (61), in |x| > R1 we have

bcM1 + bsM2 − (acM1 + asM2)/|x|2 > bcM1 + bsM2 − (acM1 + asM2)
bsM1 + bcM2

asM1 + acM2

= bsM2

(
BM + 1− (AM + 1)

M +B

M +A

)
= bsM2

(B −A)(M2 − 1)

M +A

As B > A for (A,B) ∈ D6 and M > 1, the expression above is positive, and consequently, Λ2(x)
is radially increasing in |x| > R1.

In R2 < |x| < R1, by (60) and (3), the expression on the right-hand-side of (63) can be
rewritten as:

bcM1 + bsM2 − (bsM1 + bcM2)A+ ((asM1 + acM2)A− acM1 − asM2)︸ ︷︷ ︸
=asM2(A2−1)<0 in D6

/|x|2, (64)

and hence, also using (61),

Λ′2(|x|)
|x|

> bcM1 + bsM2 − (bsM1 + bcM2)A+ asM2(A2 − 1)/R2
2 = 0.

We conclude that Λ2 is radially increasing in |x| > R2. Since Λ1 and Λ2 satisfy (22), the
overlap solution is a local minimizer (with respect to perturbations of class B) when (A,B) ∈ D6.

Next, consider the case (A,B) ∈ D3, and take the expression for the right-hand-side of (63)
that was derived in (64):

bcM1 + bsM2 − (bsM1 + bcM2)A+ ((asM1 + acM2)A− acM1 − asM2)︸ ︷︷ ︸
=asM2(A2−1)>0 in D3

/|x|2.
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Then, in R2 < |x| < R1,

Λ′2(|x|)
|x|

< bcM1 + bsM2 − (bsM1 + bcM2)A+ asM2(A2 − 1)/R2
2 = 0.

We conclude that (22) is violated and therefore the overlap solution is not a minimizer for
(A,B) ∈ D3.

Hence, we have shown:

Proposition 4.1 (Local minimum). The overlap solution with the lighter species inside (Figure
11) is a local minimizer in F with respect to class B perturbations for (A,B) ∈ D6, but not for
(A,B) ∈ D3.

As for the target equilibrium (see Theorem 3.3), we resort again to the calculations for the
second variation of the energy in Section 2.2 to infer the following (much stronger) result:

Theorem 4.2 (Global minimum). The overlap equilibrium with the lighter species inside is a
global minimizer in Fc for all (A,B) in D6 with B > 1 (A < 1 holds in all D6); i.e. in the
intersection of D6 with the shaded region in Figure 2. Note that this restriction excludes only
the bounded triangular region 0 < A < B < 1, while D6 is unbounded.

Therefore, by the variational approach we identified two global minimizers (overlap and
target equilibria with lighter species inside) which exist in unbounded (and disjoint) subsets of
the parameter space (A,B).

4.2 Heavier species inside

For this equilibrium species 1 and 2 are supported in disks of radii R1 and R2, respectively,
with R1 < R2 – see Figure 12. The heavier species 1 is now inside. In |x| < R1, where the two
species coexist, the equilibrium densities are also given by (59) (cf. (10)). In the annular region
R1 < |x| < R2, only species 2 is present, with equilibrium density (also see (10)):

ρout
2 =

bcM1 + bsM2

πas
. (65)

The radii of the two disks are given by

R2
1 =

(a2
s − a2

c)M1

(asbs − acbc)M1 + (asbc − acbs)M2
, R2

2 =
acM1 + asM2

bcM1 + bsM2
. (66)

Together with the consistency condition R1 < R2, it can be shown that the overlap equi-
librium above exists for (A,B) ∈ D1 ∪ D4. Note that A > B in D1, while in D4 one has
A < B.

Calculate ∇Λ1. We find ∇Λ1(x) = 0 in |x| < R1, as required for equilibrium (see (21)).
Outside the support,

Λ′1(|x|)
|x|

=

{
bsM1 + bcM2 − (asM1 + acM2)/|x|2 − πacρout

2 (1−R2
2/|x|2) if R1 < |x| < R2

bsM1 + bcM2 − (asM1 + acM2)/|x|2 if |x| > R2.

(67)
Consider case (A,B) ∈ D1 first. By (66), in |x| > R2 we have

bsM1 + bcM2 − (asM1 + acM2)/|x|2 > bsM1 + bcM2 − (asM1 + acM2)
bcM1 + bsM2

acM1 + asM2

= bsM2

(
M +B − (M +A)

BM + 1

AM + 1

)
= bsM2

(A−B)(M2 − 1)

AM + 1
.
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R2

R1

Species 1 & 2

Species 2 only

Figure 12: Overlap equilibrium, with species 1 and 2 coexisting on a disk of radius R1, and (the
lighter) species 2 also being present in the annular region R1 < |x| < R2.

As A > B for (A,B) ∈ D1 and M > 1, the expression above is positive, and consequently, Λ1(x)
is radially increasing in |x| > R2.

In R1 < |x| < R2, by (65) and (3), the expression on the right-hand-side of (67) can be
rewritten as:

bsM1 + bcM2 − (bcM1 + bsM2)A+ ((acM1 + asM2)A− asM1 − acM2︸ ︷︷ ︸
asM2(A2−1)M<0 in D1

)/|x|2 (68)

and hence, by (66),

Λ′1(|x|)
|x|

> bsM1 + bcM2 − (bcM1 + bsM2)A+ asM2(A2 − 1)M/R2
1 = 0.

We conclude that Λ1 is radially increasing in |x| > R1 (and satisfies (22)) for all (A,B) ∈ D1.
On the other hand, in D4 (where A > 1), using (68) and an argument analogous to the

above, we find that Λ′1(|x|) < 0 and hence (22) is violated.
Finally, for Λ2 we find ∇Λ2(x) = 0 in |x| < R2 (as for equilibrium), and outside the support,

in |x| > R2:
Λ′2(|x|) =

(
(bcM1 + bsM2)|x|2 − (acM1 + asM2)

)
/|x|.

Consequently, by the expression of R2 in (66), Λ2 is radially increasing in |x| > R2.
In conclusion, we have shown:

Proposition 4.3. The overlap solution with the heavier species inside is a local minimizer in
F with respect to perturbations of class B when (A,B) ∈ D1, but not for (A,B) ∈ D4.

Based on particle simulations we conjecture however that this overlap solution is not a
minimizer with respect to class A perturbations for any (A,B) ∈ D1; such an equilibrium has
never been captured in simulations in fact. Unfortunately, unlike for the target solution, we do
not have a linear stability analysis to support such a conjecture.

4.3 Numerical illustration: passing from D6 to D1

The overlap state with the lighter species inside (Section 4.1) is observed numerically as a steady
state in region D6 and we indicated this accordingly in Figure 1. Below we illustrate numerically
how equilibria change when parameters cross the line A = B.

In Figure 13 we show a series of snapshots. The initial configuration is the overlap state
that we find as the long-time steady state for (A,B) = (0.5, 1). Next we change the parameters
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to (A,B) = (0.5, 0.4), that is, we cross the boundary between D6 and D1. We observe that
the radial symmetry is broken, and the system attains a state in which the supports of the two
species partially overlap. It turns out that, at least asymptotically close to (A,B) = (0, 0), we
can quantify this effect, and in particular we can find the distance between the species’ centres
of mass. This is done in Section 5.

A = 0.5
B = 0.4

t = 0 t = 50 t = 220 t = 500

Figure 13: Steady state arising in parameter region D1, starting from the overlap state (lighter
species inside) that is stable in D6.

5 Weak cross-interactions

Consider the case in which the cross-interactions are much weaker than the self-interactions. We
consider a small parameter 0 < η � 1 and substitute Kc by η Kc in (1). This system exhibits a
‘regular’ timescale and a slow timescale (we also observe this in numerics; see Figure 14). We
will now examine this separation of timescales and its implications for the steady state.

Introduce a two-scale expansion in (1) given by the variables t and s := η t. Taking the
transformation ∂

∂t 7→
∂
∂t + η ∂

∂s into account, the two-scale model equations are

∂ρ1

∂t
+ η

∂ρ1

∂s
+∇ · (ρ1v1) = 0, v1 = −∇Ks ∗ ρ1 − η∇Kc ∗ ρ2, (69a)

∂ρ2

∂t
+ η

∂ρ2

∂s
+∇ · (ρ2v2) = 0, v2 = −η∇Kc ∗ ρ1 −∇Ks ∗ ρ2, (69b)

and they can be separated into

O(η0) :
∂ρi
∂t

+∇ · (ρi(−∇Ks ∗ ρi)) = 0, i = 1, 2, (70)

O(η1) :
∂ρi
∂s

+∇ · (ρi(−∇Kc ∗ ρj)) = 0, i = 1, 2, j 6= i. (71)

Setting ∂
∂tρi = 0 and ∂

∂sρi = 0 in (70)–(71), we obtain the following conditions for a steady state:

−∇Ks ∗ ρ̄i = 0, on supp ρ̄i, for each i = 1, 2, (72)

−∇Kc ∗ ρ̄j = 0, on supp ρ̄i, for each i = 1, 2, j 6= i, (73)

where ρ̄1 and ρ̄2 denote the steady state densities. By the first equation (72), we know that
each species independently attains the steady state of a single, isolated species corresponding to
the potential Ks. In fact, the zeroth-order equation (70) suggests that each species approaches
this steady state at the ‘regular’ timescale t. Note that these steady states are determined per
species up to translation of the centre of mass.

The equilibrium distance between the centres of mass can be derived from (73). Integration
of −∇Kc ∗ ρ̄2 = 0 over supp ρ̄1 yields∫

supp ρ̄1

∫
supp ρ̄2

∇Kc(x− y)ρ̄2(y)ρ̄1(x) dydx = 0. (74)

We note that due to the assumed antisymmetry of ∇Kc, the same condition is obtained if we
integrate −∇Kc ∗ ρ̄1 = 0 over supp ρ̄2. This condition (74) holds for general cross-interaction
potential Kc.
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5.1 Newtonian-quadratic interactions

We now take the same interaction potentials Ks and Kc as in (2). By taking η small, we are
zooming in at the origin in Figure 2. Analogous to (3), the dimensionless numbers A and B are
defined as the ratios of the cross- and self-interaction parameters. Here we take into account
that the cross-interactions are pre-multiplied by η, and we have A := η ac/as and B := η bc/bs.

From (72) and (2a) it follows due to [7, 26] that the steady state densities are (to leading
order) of the form:

ρ̄1(x) =
bsM1

π as
χB(x0,R)(x), ρ̄2(x) =

bsM2

π as
χB(x̄0,R)(x), (75)

for some x0, x̄0 ∈ R2 and with R2 := as/bs. Here, χ is the characteristic function. Note that
both supports have the same radius, even though the masses M1 and M2 are in general unequal.
Without loss of generality, take x̄0 = x0 + (d, 0)T for some constant d > 0. The condition (74)
can now be written as∫

B(x0,R)

∫
B(x̄0,R)

[
ac

x− y
|x− y|2

− bc (x− y)

]
dydx = 0. (76)

and we now show that this can be reduced to a relation between d and the model parameters.
The attraction part is evaluated explicitly as

− bc
∫
B(x0,R)

∫
B(x̄0,R)

(x− y) dydx = bc π
2R4(x̄0 − x0) =

a2
s bc π

2

b2s

(
d
0

)
. (77)

For the repulsion part, we distinguish between the following cases:

Case 1: d > 2R. In this case B(x0, R) ∩ B(x̄0, R) = ∅, hence (43) implies that for all x ∈
B(x0, R) ∫

B(x̄0,R)

x− y
|x− y|2

dy = π R2 x− x̄0

|x− x̄0|2
. (78)

Subsequently, (43) yields that∫
B(x0,R)

π R2 x− x̄0

|x− x̄0|2
dx = π2R4 x0 − x̄0

|x0 − x̄0|2
, (79)

because x̄0 /∈ B(x0, R). Noting that x0 − x̄0 = (−d, 0)T , we conclude for d > 2R that the
only the first component of (76) yields a nontrivial condition. This condition is

− ac π2R4 1

d
+ bc π

2R4 d = 0, (80)

where we used (77) and (79). We recall that R2 = as/bs, A := η ac/as and B := η bc/bs.
Hence,

d

R
=

√
A

B
. (81)

Therefore, (81) implies that complete separation of the two species (that is, d > 2R), takes
place for

A/B > 4.
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Case 2: R < d 6 2R. Define B1 := B(x0, R) ∩ B(x̄0, R) and B2 := B(x0, R) \ B(x̄0, R). For
the repulsion part of (76), it holds –cf. (43)– that∫

B(x0,R)

∫
B(x̄0,R)

x− y
|x− y|2

dy dx =

∫
B1

π (x− x̄0) dx+

∫
B2

π R2 x− x̄0

|x− x̄0|2
dx

=

∫
B1

π (x− x̄0) dx

+

∫
B(x0,R)

π R2 x− x̄0

|x− x̄0|2
dx−

∫
B1

π R2 x− x̄0

|x− x̄0|2
dx

(82)

The area of B1 is 2R2 arccos(d/(2R)) − d/2
√

4R2 − d2 while, by construction, its centre
of mass is x0 + (d/2, 0)T . Therefore∫

B1

π (x− x̄0) dx =

(
−πd

[
R2 arccos

(
d

2R

)
− d

4

√
4R2 − d2

]
, 0

)T
. (83)

For R < d 6 2R, we have that x̄0 /∈ B(x0, R). Thus, it follows from (43) that∫
B(x0,R)

π R2 x− x̄0

|x− x̄0|2
dx = π2R4 x0 − x̄0

|x0 − x̄0|2
. (84)

It remains to evaluate the integral over B1 in the last line of (82). For symmetry reasons,
this integral is a vector in the direction of x0− x̄0, that is, in the direction of e1 = (1, 0)T .
Consider therefore∫
B1

x− x̄0

|x− x̄0|2
dx · e1 =

∫
B1

∇ ln

(
|x− x̄0|
R

)
· e1 dx =

∫
∂B1

ln

(
|x− x̄0|
R

)
e1 · n̂(x) dS(x),

(85)

where the last step follows from Gauss’ theorem. The boundary of B1 consists of two
circular segments, that are subsets of ∂B(x0, R) and ∂B(x̄0, R), respectively. Call these
segments ∂Bα ⊂ ∂B(x0, R) and ∂Bβ ⊂ ∂B(x̄0, R), such that ∂Bα ∪ ∂Bβ = ∂B1. Note
that for x ∈ ∂Bβ it holds that |x − x̄0| = R, hence ln(|x − x̄0|/R) = 0, and therefore the
contribution of the integration over ∂Bβ in (85) is zero. Thus∫

B1

x− x̄0

|x− x̄0|2
dx · e1 =

∫
∂Bα

ln

(
|x− x̄0|
R

)
e1 · n̂(x) dS(x),

while for x ∈ ∂Bα, we have x = x0 + R(cos θ, sin θ)T , n̂(x) = (cos θ, sin θ)T and dS(x) =
Rdθ with −γ 6 θ 6 γ and γ := arccos(d/(2R)). Consequently,∫

∂Bα

ln

(
|x− x̄0|
R

)
e1 · n̂(x) dS(x) = R

∫ γ

−γ
ln

(√
1 +

d2

R2
− 2d

R
cos θ

)
cos θ dθ. (86)

A combination of (76), and (77), (82), (83), (84) and (86) yields that d/R is implicitly
defined as a function of A/B by

A

B
=

d2

R2

1 +
d2

πR2

[
γ − d

4R

√
4− d2

R2

]
+

d

2π R

∫ γ

−γ
ln

(
1 +

d2

R2
− 2d

R
cos θ

)
cos θ dθ

. (87)

Here we used that R2 = as/bs and we recall that γ = γ(d/R) = arccos(d/(2R)).
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Case 3: d 6 R. In this case x̄0 ∈ B(x0, R). The only difference with the case R < d 6 2R is
therefore the evaluation of the integral over B(x0, R) in (82). Thus, we replace (84) by∫

B(x0,R)
π R2 x− x̄0

|x− x̄0|2
dx = π2R2 (x0 − x̄0) = −π2 dR2 e1. (88)

For d 6 R, the analogue of (87) is

A

B
=

π d

R

π d

R
+
d

R

[
γ − d

4R

√
4− d2

R2

]
+

1

2

∫ γ

−γ
ln

(
1 +

d2

R2
− 2d

R
cos θ

)
cos θ dθ

. (89)

We recall that A := η ac/as and B := η bc/bs, while γ = arccos(d/(2R)).

Taking the limit d ↓ 0 in the right-hand side of (89), we obtain A/B = 1. This is
the threshold value for full mixing.

Consistency with densities derived in (10). Note that in (75) we concluded that (to
leading order) the values of the steady state densities are the same as for the single species
model. That is: ρ̄i = bsMi/(π as). In (10) we identified the steady state densities in a two-
species model, and we can use these expressions to verify (75). In the setting with weak cross-
interaction parameters η ac and η bc, we find analogously to (10) that the equilibrium values for
the density are

ρ̄1 =
bsM1 + η bcM2

πas
in regions where only one species exists,

ρ̄1 =
(asbs − η2 acbc)M1 + η (asbc − acbs)M2

π(a2
s − η2a2

c)
in overlap regions;

and similar expressions for species 2. To leading order, these two expresions are however the
same, and both are equal to the single species value ρ̄1 = bsM1/(π as). The deviations are only
O(η).

5.2 Numerical illustration

We start with an illustration of the two timescales present in the model with weak cross-
interactions. We use a particle system of 100 particles with M = 2. That is, we have 67 particles
of species 1 and 33 particles of species 2. We take η = 0.001, and furthermore as = bs = bc = 1
and ac = 6. The particles are initialized randomly. Their time evolution is shown in Figure 14.
We clearly see that each species self-organizes fast into a circular shape. The distance between
the two circles equilibrates at a much larger timescale. The distance between the centres of
mass of the two species is computed and divided by R =

√
as/bs to get an estimate for d/R

(indicated above each plot in Figure 14). The values obtained slowly approach the limit value√
A/B =

√
6 ≈ 2.45, as predicted by our asymptotic analysis; see (81).

We verify the relation between A/B and d/R provided by (81), (87) and (89). In Figure
15, the blue curve is composed of three segments corresponding to the derived expressions for
d > 2R, R < d 6 2R and d 6 R, respectively. The black diamonds and stars are based on
the evolution of a particle system of 200 particles. Initially they are distributed randomly. An
estimate for d is obtained from the long-time configuration (at t = 3000), in which we compute
the distance between the centres of mass of both species. We took η = 0.05, as = bs = bc = 1
and varied the value of ac. Note that hence, R = 1.

To show that the relations between d/R and A/B are independent of the mass ratio M =
M1/M2, we perform the numerical calculations for M = 1 (diamonds) and M = 2 (stars). Both
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Figure 14: Time evolution of the particle system. There are 100 particles, while M = 2 (particles
are distributed 67:33). We took as = bs = bc = 1 and ac = 6. For each plot we indicate d/R,
which is the distance between the two centres of mass divided by R =

√
as/bs. This value

approaches the theoretically derived prediction
√
A/B =

√
6 ≈ 2.45.

cases are nearly identical and coincide with the blue curve, hence confirm our prediction based
on the asymptotic analysis. The blue curve also shows that d = 0 is attained at A/B = 1, the
point at which a pitchfork bifurcation takes place. For A/B < 1, the particle system calculations
exhibit full mixing, i.e. d ≈ 0. Figure 15 contains typical examples of particle configurations for
full mixing, partial overlap, tangential disks, and full separation. We will discuss these regimes
now once more, using the phase plane A versus B. The weak cross-interactions regime η � 1
corresponds to an area infinitesimally close to the origin in the (A,B) plane. In Figure 16 we
‘zoom in’ near the origin and indicate which steady states we can expect to occur where. We
emphasize that our considerations only hold asymptotically as η ↓ 0.

For A/B < 1, we concluded that total overlap is to be expected. This happens in the area
above the line B = A in Figure 16. In the top configuration the two densities are supported on
the same disk of radius R. Their densities may differ, depending on M . In the figure we have
M = 2 and the density of species 1 is therefore larger than the density of species 2.

For A/B > 1 there is a bifurcation and steady states other than complete overlap come into
existence. In Figure 15 we show the (scaled) distance between the two centres of mass being
larger than zero in this case. In the phase plane (see Figure 16, below the line B = A) we
consequently see a non-radially symmetric state in which the two species are each supported on
a disk, but the centres of the disk do not coincide. See the top right configuration. There is still
a region of overlap, though, as long as A/B < 4.

The threshold value A/B = 4 denotes the transition from partial overlap to full separation.
For A/B we observe two tangential circular states (bottom right configuration in Figure 16).
For A/B > 4 (that is: below the line B = A/4 in Figure 16) the two disks are fully separated;
see the bottom left configuration. The distance between the centres of mass is predicted by the
relation (81), i.e. d/R =

√
A/B.

In Figure 16, the lines A/B = 1 and A/B = 4 are there only for their slopes to indicate
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Figure 15: Blue curve: d/R as a function of A/B provided by (81), and the implicit relations
(87) and (89). Data points: estimate of d/R based on particle simulations at time t = 3000, for
η = 0.05 and several values of A/B. Black diamonds: M = 1, hence 100 particles per species.
Black stars: similar calculations for M = 2, i.e. 133 particles of species 1, and 67 particles of
species 2. Typical particle configurations are given to illustrate full mixing, partial overlap,
tangential disks (at the point where A/B = 4 and d/R = 2), and full separation.

the asymptotic threshold values. If (A,B) is taken O(1) away from the origin, it remains to
be investigated if phase plane boundaries between geometrically different steady states can be
found, and whether or not these are straight lines.

6 Discussion

In this paper, we produced a catalogue of steady states for model (1) with interaction potentials
(2), as presented in Figure 1.

We argued (see Section 3) by means of linear stability analysis that the target with the
lighter species inside exists and is stable for parameters (A,B) in regions D4 and D5. The
target with the heavier species inside is (if it exists at all) not stable with respect to small
perturbations of the boundaries. Both results agree with what we observe numerically. Our
variational approach in both cases tends to predict stability regions that are larger than those
for the linear stability analysis. We expect this to be a result of the fact that in some parameter
regions, due to the difficulties explained in Section 2.2, we have not considered a certain type of
perturbations, namely those supported in the support of the equilibrium (referred in the paper
as class A perturbations). Nevertheless, in the region of the parameter space where A < 1 and
B > 1 we were able to do a complete variational argument to show that the the target with the
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Figure 16: Steady states for weak cross-interactions depend on the value of A/B. The figure
should be considered as the phase plane Figure 2 zoomed in close to the origin. The lines
A/B = 1 and A/B = 4 represent the theoretically derived asymptotic thresholds for full mixing
and complete separation. We observe full mixing for A/B < 1, partial mixing for 1 < A/B < 4,
two tangential circles for A/B = 4, and separation for A/B > 4.

lighter species inside is a global minimizer.
The ‘overlap’ state with the lighter species inside is numerically observed only in D6. In

Section 4 we verified this conjecture using our variational approach and found that it is a local
minimizer of the energy with respect to class B perturbations. Moreover, in the subset of D6

with A < 1 and B > 1 (which is all of D6 except a bounded triangular region), a full variational
analysis showed that the overlap equilibrium with the lighter species inside is a global minimizer
of the energy. The overlap solution with the heavier species inside is never observed numerically.
By the variational approach however, we found that this overlap state is a local minimizer with
respect to class B perturbations, if and only if parameters are taken from region D1. Based on
numerical results, it is our conjecture that in D1 this state is not a minimizer with respect to
class A perturbations.

The various non-radially symmetric steady states in Figure 1 were investigated numerically
in more depth. This was shown in Figures 9, 10 and 13. These states arose from initializ-
ing the system (39) in a radially symmetric configuration and taking parameters outside the
corresponding stability region. We were able to observe the specific modes of instability.

Finally we shed light on the symmetry-breaking that happens when passing parameters
from D6 to D1. In Section 5 we examined the limit of weak cross interactions and obtained
an (asymptotically valid) relation between the parameters (A,B) and the distance between the
centres of mass of the two species.

The choice of potentials (2) in this paper is quite specific. Our main motivation for taking
these Newtonian-quadratic potentials is the fact that they leave room for obtaining results ana-
lytically. For instance, the fact that all steady states in this paper are “piecewise” constant, is a
direct result of the choice of potentials. Our method of performing linear stability analysis was
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inspired by this observation. However, from the point of view of the biological applications, one
might prefer alternative potentials that induce interactions with a limited range. We acknowl-
edge that potentials (2) even lead to increasing attraction as the distance grows. One should
be aware however that different potentials will lead inevitably to changes in the nature of the
steady states.

A less radical way to increase realism is to remove the symmetry in the interactions between
species 1 and 2. There is no direct biological reason why the two respective species among
themselves would behave according to the same parameters. Neither is there a reason why
species 1 would respond in the same way to species 2 as species 2 responds to species 1. Instead
of having two repulsion parameters as and ac, one could therefore introduce four parameters:
a11, a22 for self-repulsion and a12, a21 for cross-repulsion. The analogue can be done for the
attraction parameters bs and bc. We note that such modifications may alter the dynamics of
the system (e.g. introducing chasing dynamics). Moreover, the resulting system will in general
no longer possess the gradient flow structure. Consequently, the variational approach of this
paper may be not applicable anymore, and other methods for investigation of stability need to
be designed.

Furthermore, making the step from a one-species model to a two-species model naturally
opens the door to exploring multi-species models. Some preliminary numerical experiments for
three species (not presented in the current paper) indicate that many interesting patterns may
be expected.

A Target equilibrium with (A,B) ∈ D3: condition (22) for Λ2

With parameters (A,B) ∈ D3, checking condition (22) for Λ2 amounts to comparing the relative
sizes of λ2 and λm – see Figures 5(b) and (c). To find λ2 and λm, we use (42) and calculate
Λ2(x) in |x| < R2 (where Λ2 has constant value λ2) and at the location (47). We find

λ2 =
1

2
(acM1 + asM2)− ρ̄1ac(πR

2
0 logR0 − πR2

1 logR1)− ρ̄2asπR
2
2 logR2

+
1

4
(bcM1(R2

0 +R2
1) + bsM2R

2
2),

(90)

and

λm =
1

2
(acM1 + asM2)− 1

2
(acM1 + asM2) log

(
acM1 + asM2

bcM1 + bsM2

)
+

1

4
(bcM1(R2

0 +R2
1) + bsM2R

2
2).

(91)

Note that the first term in the right-hand-sides of (90) and (91), as well as the expressions on the
second lines of the respective right-hand-sides, are the same. Also, by adding and subtracting
ρ̄1acπR

2
1 logR0 one can write

ρ̄1ac(πR
2
0 logR0−πR2

1 logR1)+ρ̄2asπR
2
2 logR2 = acM1 logR0+asM2 logR2+ρ̄1acπR

2
1 log

(
R0

R1

)
.

Use the above in the expression (90) for λ2. The target is not a minimizer if λm < λ2. By
(90) and (91), this occurs when

1

2
(acM1 + asM2) log

(
acM1 + asM2

bcM1 + bsM2

)
> acM1 logR0 + asM2 logR2 + ρ̄1acπR

2
1 log

(
R0

R1

)
.

By using (40) and notations (3), we can reduce the inequality above to

AM log

(
BM + 1

B +M

)
−AM log

(
AM + 1

A+M

)
− log(1 +AM) < −A2 log

(
1 +

M

A

)
,

and after some elementary manipulations, one finds (48).
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B Calculation of the basic integrals for perturbed boundaries

For brevity of notation, in this appendix we omit any t-dependence in the perturbations. We
evaluate integrals (37) on the perturbed boundaries; that is, for x = pj(θ0) for some index j.
The latter integral in (37) becomes∫

Ωε`

(x− y) dy = x

∫
Ωε`

dy −
∫

Ωε`

y dy =

{
xπR2

` − πR3
` ε`,N if m = 1,

x πR2
` if m > 2;

(92)

where second- and higher-order terms in ε are omitted. Here we used the full expressions for
the area and centre of mass of Ωε

` as given in Section 2.3. Note that by taking x = pj(θ0), we
introduce extra O(ε) terms in (92).

To find the first-order approximation of the first integral in (37), we take x = pj(θ0), param-
eterize ∂Ωε

` by p`(θ) and compute that

n̂ dS = R` e
iθ(1 + (ε`,N +mε`,T ) cos(mθ) + i (ε`,T +mε`,N ) sin(mθ)) dθ. (93)

Subsequently, we obtain

−
∫
∂Ωε`

ln |x− y| n̂ dS =

−
∫ 2π

0
ln(|pj(θ0)− p`(θ)|)R` eiθ(1 + (ε`,N +mε`,T ) cos(mθ) + i (ε`,T +mε`,N ) sin(mθ)) dθ.

(94)

The logarithm in the integrand can be written as

ln |pj(θ0)− p`(θ)| =
1

2
ln |pj(θ0)− p`(θ)|2

and we expand it in terms of ε. First, we expand:

|pj(θ0)− p`(θ)|2 =

=R2
j+R2

`−2RjR` cos(θ−θ0)︷ ︸︸ ︷
|Rj eiθ0 −R` eiθ|2

+ εj,N2Rj cos(mθ0) · (Rj −R` cos(θ − θ0))

+ ε`,N2R` cos(mθ) · (R` −Rj cos(θ − θ0))

− 2RjR` sin(θ − θ0) · (εj,T sin(mθ0)− ε`,T sin(mθ)) +O(|ε|2). (95)

Here, we use the generic notation O(|ε|2) for higher-order terms in any εj,N , εj,T , ε`,N or ε`,T .
Introduce the notation α := R`/Rj . We use (95) and ln(X + εY ) ∼ ln(X) + εY/X in (94), we
omit further O(|ε|2) terms and write sines and cosines as complex exponentials. After expanding
(94) in this way, there is a part containing a logarithm that consists of integrals of the form∫ 2π

0
ln(1 + α2 − 2α cos(θ − θ0)) eiµθ dθ = −2π

|µ|
eiµθ0

{
α|µ| if α 6 1,

α−|µ| if α > 1;
(96)

for several values of µ ∈ Z\{0}. The expression in (96) is derived in Appendix C and is valid for
any α > 0, including α = 1. Note that ln(R2

j +R2
` − 2RjR` cos(θ − θ0)) = ln(R2

j ) + ln(1 + α2 −
2α cos(θ−θ0)), while one can show that the part of (94) containing ln(R2

j ) has zero contribution
eventually. Consequently, the “logarithmic part” of (94), equals

πR`e
iθ0

(
β +

1

2
(ε`,N + ε`,T )β2eiθ0

)
if m = 1,

πR`e
iθ0

(
β +

1

2
(ε`,N + ε`,T )βm+1eimθ0 − 1

2
(ε`,N − ε`,T )βm−1e−imθ0

)
if m 6= 1;

(97)
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with β := min{Rj , R`}/max{Rj , R`} 6 1.
There is a “rational part” in (94) that, for α 6= 1, consists of contributions of the form

∫ 2π

0

eiµθ

1 + α2 − 2α cos(θ − θ0)
dθ = 2πeiµθ0


α|µ|

1− α2
if α < 1,

α−|µ|

α2 − 1
if α > 1.

(98)

This expression is also derived in Appendix C and it is valid for all µ ∈ Z.
The “rational part” of (94) becomes (for α 6= 1):

−R`
2
παeiθ0

[(
εj,N − εj,T − α(ε`,N − ε`,T )

)
eiθ0 + (εj,N + εj,T ) e−iθ0

]
if m = 1 and α < 1,

−R`
2
παeiθ0

[(
εj,N − εj,T − αm(ε`,N − ε`,T )

)
eimθ0

+
(
εj,N + εj,T − αm−2(ε`,N − ε`,T )

)
e−imθ0

]
if m 6= 1 and α < 1,

R`
2

π

α
eiθ0

[(
εj,N + εj,T −

1

α
(ε`,N + ε`,T )

)
eiθ0 +

(
εj,N − εj,T − 2αε`,N

)
e−iθ0

]
if m = 1 and α > 1,

R`
2

π

α
eiθ0

[(
εj,N + εj,T − α−m(ε`,N + ε`,T )

)
eimθ0

+
(
εj,N − εj,T − α2−m(ε`,N + ε`,T )

)
e−imθ0

]
if m 6= 1 and α > 1.

(99)

This approach is correct as long as j 6= `, since otherwise Rj = R`, thus α = 1, and there
is a singularity in the denominator. This case requires a partially different approach. If j = `,
then the rational O(ε) part becomes

− Rj
2

∫ 2π

0

[
εj,N cos(mθ0) + εj,N cos(mθ) + εj,T

(
sin(mθ)− sin(mθ0)

) sin(θ − θ0)

1− cos(θ − θ0)

]
eiθ dθ

=


−Rj

2
π(εj,N + εj,T ) if m = 1,

−Rjπ εj,T e−i(m−1)θ0 if m 6= 1.

(100)

In the latter part of the integrand the singularity in the denominator is compensated by the terms
in the numerator, which can be seen by expanding all sines and cosines in complex exponentials.
Note that if we take j = `, we see that the limits α ↓ 1 and α ↑ 1 in (99) agree and are equal to
the expressions in (100) for both m = 1 and m 6= 1.

In conclusion, combining (97), (99) and (100), we have the following:

Case R` < Rj, hence α < 1 and β = α = R`/Rj: For all m > 1,∫
Ωε`

x− y
|x− y|2

dy = πR`e
iθ0

[
β −

(
1

2
β(εj,N − εj,T )− βm+1 ε`,N

)
eimθ0 − 1

2
β(εj,N + εj,T )e−imθ0

]
= πR`e

iθ0
[
β +

(
−βεj,N + βm+1ε`,N

)
cos(mθ0) +

(
βεj,T + βm+1ε`,N

)
i sin(mθ0)

]
. (101)

Case ` = j, hence R` = Rj and β = α = 1: For all m > 1,∫
Ωε`

x− y
|x− y|2

dy =πRje
iθ0

[
1 +

1

2
(εj,N + εj,T )eimθ0 − 1

2
(εj,N + εj,T )e−imθ0

]
=πRje

iθ0 [1 + (εj,N + εj,T ) i sin(mθ0)] . (102)
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Case R` > Rj, hence α > 1 and β = 1/α = Rj/R`: For all m > 1,∫
Ωε`

x− y
|x− y|2

dy = πR`e
iθ0

[
β +

1

2
β(εj,N + εj,T )eimθ0 +

(
1

2
β(εj,N − εj,T )− βm−1ε`,N

)
e−imθ0

]
= πR`e

iθ0
[
β +

(
βεj,N − βm−1ε`,N

)
cos(mθ0) +

(
βεj,T + βm−1ε`,N

)
i sin(mθ0)

]
. (103)

Note that the above expressions are consistent in the sense that if we set j = ` (hence, β = 1)
in either (101) or (103) we obtain (102). Note also that if we set εj,N = εj,T = ε`,N = ε`,T = 0
in (101)-(102)-(103), the expressions are consistent with (43).

C Evaluation of integrals (96) and (98)

The integral on the left-hand side of (98) is treated as follows:∫ 2π

0

eiµθ

1 + α2 − 2α cos(θ − θ0)
dθ = eiµθ0

∫ π

−π

eiµφ

1 + α2 − 2α cos(φ)
dφ,

where the substitution φ = θ− θ0 is used. The real part of the integrand on the right-hand side
is an even function in φ, while the imaginary part is odd. Hence,∫ π

−π

eiµφ

1 + α2 − 2α cos(φ)
dφ = 2

∫ π

0

cos(µφ)

1 + α2 − 2α cos(φ)
dφ.

The latter integral is given in [32, p. 253, No. 31]. Note that [32] only treats µ > 0, but that the
expression given therein is easily generalized to all µ ∈ Z. The above considerations combined
yield (98).

To find (96), we compute the derivative of the left-hand side with respect to θ0 in two
different ways. On the one hand:

d

dθ0

∫ 2π

0
ln(1 + α2 − 2α cos(θ − θ0)) eiµθ dθ =

∫ 2π

0

−2α sin(θ − θ0)

1 + α2 − 2α cos(θ − θ0)
eiµθ dθ

= − 2α eiµθ0
∫ 2π

0

sin(φ)

1 + α2 − 2α cos(φ)
eiµφ dφ. (104)

Again, we used the substitution φ = θ − θ0. Writing sinφ in terms of complex exponentials
sinφ = (exp(iφ) − exp(−iφ))/(2i), we can express the latter integral as the difference of two
integrals of the form (98). By working out the result for all µ ∈ Z \ {0}, we obtain

− 2α eiµθ0
∫ 2π

0

sin(φ)

1 + α2 − 2α cos(φ)
eiµφ dφ =

{
−2πi eiµθ0 sgn(µ)α|µ| if α < 1,

−2πi eiµθ0 sgn(µ)α−|µ| if α > 1.
(105)

On the other hand:

d

dθ0

∫ 2π

0
ln(1 + α2 − 2α cos(θ − θ0)) eiµθ dθ = i µ eiµθ0

∫ 2π

0
ln(1 + α2 − 2α cos(φ)) eiµφ dφ

= i µ

∫ 2π

0
ln(1 + α2 − 2α cos(θ − θ0)) eiµθ dθ (106)

Together, (104), (105) and (106) yield the result of (96) in all cases except for α = 1.
For α = 1 (and µ 6= 0), note that the imaginary part of the integrand ln(2−2 cos(φ)) exp(iµφ)

is an odd function, and therefore yields no contribution. Therefore,∫ 2π

0
ln(2− 2 cos(θ − θ0)) eiµθ dθ = eiµθ0

∫ 2π

0
ln(2− 2 cos(φ)) cos(µφ) dφ
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and integration by parts yields∫ 2π

0
ln(2− 2 cos(φ)) cos(µφ) dφ =

[
1

µ
sin(µφ) ln

(
2− 2 cos(φ)

)]2π

0

− 1

µ

∫ 2π

0

sin(µφ) sin(φ)

1− cos(φ)
dφ.

(107)

The boundary terms vanish, and this can be shown by introducing series expansions around 0
and 2π and applying l’Hôpital’s rule. Moreover, the integrand on the right-hand side has no
singularities. To see this, expand all sines and cosines in complex exponentials (analogously to
the arguments leading to (100)). Some manipulations are required to observe that all apparent
singularities are compensated by zeros in the numerator. Having done these manipulations, we
can evaluate the integral exactly, multiplying by exp(iµθ0), we obtain the right-hand side of
(96), for α = 1.
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[39] R. Simione, D. Slepčev, and I. Topaloglu. Existence of ground states of nonlocal-interaction
energies. J. Stat. Phys., 159(4):972–986, 2015.

[40] James von Brecht, David Uminsky, Theodore Kolokolnikov, and Andrea Bertozzi. Predict-
ing pattern formation in particle interactions. Math. Models Methods Appl. Sci., 22(Supp.
1):1140002, 2012.

45


	Introduction
	Preliminaries
	General preliminaries
	Variational approach
	Linear stability analysis
	Discrete model and numerical investigation of equilibria

	Target equilibrium
	Lighter species inside
	Variational approach
	Linear stability analysis

	Heavier species inside
	Variational approach
	Linear stability analysis

	Numerical illustration of the unstable modes
	Target: lighter species inside
	Target: heavy species inside


	Overlap equilibrium
	Lighter species inside
	Heavier species inside
	Numerical illustration: passing from D6 to D1

	Weak cross-interactions
	Newtonian-quadratic interactions
	Numerical illustration

	Discussion
	Target equilibrium with (A,B) D3: condition (22) for 2
	Calculation of the basic integrals for perturbed boundaries
	Evaluation of integrals (96) and (98)

