
Boundary value problems with very sharp
structures: numerical challenges
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Introduction

• Singular perturbation problems depend on a small parameter ε which typically
premultiplies the highest derivative.

• As ε → 0, the problems exhibit localized structures such as boundary layers, corner
layers, spikes, interfaces.

• Typically, the localized structure has the size O(ε); the solution is relatively smooth
outside the localized region.

• Standard codes to solve BVP may have difficulty resolving localized structures:
typically, meshsize scales with 1/ε.

• Example: a standard code requires 10,000 meshpoints when ε = 10−5?
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Problem 1

Solve the problem

ε2u′′
− u +

(

1 + x2
)

u2 = 0; u′ (0) = 0; εu′(1) = −u(1).

Asymptotic solution: Transform

x = εy;

uyy − u + (1 + ε2y2)u2

so that
u(x) ∼ w(

x

ε
)

where

w =
3

2
sech2 (y/2) solves wyy−w+w2 = 0.
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• Note that
w ∼ O(1) for y = O(1)

but it decays,
w ∼ 6e−y for large y.

• This exponential decay can cause trouble for BVP solvers.

• The solution exhibits two different spatial scales.

• Maple BVP solver: meshsize scales like 1/ε.

• Matlab does much better [see below]
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Split-range method
Split-range method

• Choose l ∈ [0, 1],
ε � l � 1

.

• On [0, l], (inner problem) transform:

x = ly, u(t) = û(y)

• On [l, 1], (outer problem) transform:

x = l + (1 − l)y, u(t) = exp

(

ũ(y)

ε

)

• We get a 4-dimensional BV P for û, ũ on y ∈ [0, 1]. The boundary conditions
become:

û′(0) = 0, ũ′(1) = −1

û(1) = exp

(

ũ(0)

ε

)

(continuity of u)

û′(1)

l
=

1

ε(1 − l)
exp

(

ũ(0)

ε

)

ũ′(0) (continuity of u′)

• The parameter l is chosen by trial and error. Global tolerance is set to 10−6; Maple’s
dsolve/bvp is used with adaptive gridding.
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Meshsize scaling laws

ε
split range
(l = 9ε)

split range
(l = 4ε ln 1

ε)
Standard Maple
(adaptive mesh)

Standard Matlab
(adaptive mesh)

0.1 21 21 51 50
0.05 21 24 87 37
0.025 21 21 106 41
2−3

× 0.1 21 26 178 38
2−4

× 0.1 21 29 376 41
2−5

× 0.1 30 30 792 42
2−6

× 0.1 58 32 error 50
2−7

× 0.1 119 31 39
2−8

× 0.1 226 32 35
2−9

× 0.1 472 33 35
2−10

× 0.1 946 34 93
2−11

× 0.1 error 35 61
... ... ...
2−16

× 0.1 41 36
2−17

× 0.1 42 38

• The “good“ l scales like l = O(ε ln ε)!
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Understanding l = O(ε ln ε)

• Consider a simple problem

εuxx + ux = 1, u(0) = 0 = u(1). (1)

• Asymptotic composite solution is:

u ∼ exp (−x/ε) + x − 1 (2)

• There is a boundary layer at 0 as ε → 0 :
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Error analysis, uniform mesh
• Discretize: let h = 1/N and approximate εuxx + ux = 1 by

ε
ûi−1 + ûi+1 − 2ui

h2
+

ûi+1 − ûi−1

2h
= 1; û0 = 0 = ûN .

• Interpolate û so it is defined on the whole interval [0, 1] with û (ih) = ûi.

• Next, note that

ûi+1 + ûi−1 − 2ûi

h2
= û′′ + h2

û′′′′

12
+ O(h4);

ûi+1 − ûi−1

2h
= û′ + h2

û′′′

6
+ O(h4);

• So consider the error
w = u − û;

Then

εwxx + wx ∼ h2

(

ε
û′′′′

12
+

û′′′

6

)

∼ h2

(

ε
u′′′′

12
+

u′′′

6

)

∼ −
1

12

h2

ε3
exp (−x/ε)
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• The error w = u − û satisfies

εwxx + wx ∼ −
1

12

h2

ε3
exp (−x/ε) ; w(0) = 0 = w(1)

Note the resonance! The solution is

w ∼
1

12

h2

ε3
x exp (−x/ε) ;

Maximum occurs at x = ε; max error is

max w =

(

h

ε

)2
e−1

12

Conclusion: N = O(1/ε) for uniform mesh!!!
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A two-sized mesh:

Take l ∈ (0, 1) and discretize using uniform mesh of N1 points inside [0, l] and another
uniform mesh of N2 = N − N1 points inside [l, 1].

The error function w = u − û then satisfies:

εw′′ + w′
∼ −

1

12















l2

N2
1
ε3

e−x/ε, x ∈ (0, l)

(1 − l)2

N2
2
ε3

e−x/ε, x ∈ (l, 1)

Define
r := N2/N1;

and write

N1 = N
1

1 + r
; N2 = N

r

1 + r
Assuming l, ε � 1, solving for w we obtain:

w ∼
1

12

(1 + r)2

N2

{

e−x/εxl2

ε3
+ e−l/ε l2

ε2

(

1

r2

1

l2
− 1

)

(

1 − e−x/ε
)

}

, x ∈ [0, l]

∼
1

12

(1 + r)2

N2

{

e−x/ε

r2

x

ε3
+ (1 −

1

r2l2
)
l2e−x/ε

ε2

(

e−l/ε
− 1 +

l

ε

)}

, x ∈ [l, 1]

10



Given ε, N, we want to determine l, r which minimizes the maximum of w.

The proper scaling is

l = ε ln
1

ε
p;

The maximum of w is attained at x?
∼ ε � l; given by

w(x?) ∼
1

12

(1 + r)2

N2

{

exp (−1)

(

ln
1

ε

)2

p2 + εp−2
1

r2
(1 − exp(−1))

}

Minimizing with respect to p and r, we get:

p = 2; r =

(

e − 1

4

)1/3 (

1

ln(1/ε)

)2/3

;

min
l,r

max
x

w ∼
1

3e

(

ln 1

ε

N

)2

Conclusion: N = O(ln(1/ε)) for two-sized mesh!!! [this is exponentially better than
N = O(1/ε) scaling of the uniform mesh!!ç
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Example 1: ε := 10−8; N = 200.

• The optimal two-sized mesh is:

l = 3.6 × 10−6

r = 0.108 =⇒ N1 = 180, N2 = 20

• Numerical error = 0.0013. Predicted error = 0.0014. Uniform mesh: Would need
N = 109 meshpoints to get same accuracy!

Example 2: Direct comparison of uniform vs. split-range:

ε N
error

(unif. mesh)
error

(optimal two-sided mesh)

0.02 100 0.0080 0.00053
0.01 100 0.035 0.00072
0.005 100 0.14 0.00092
0.0025 100 FAIL 0.0011
10−3 100 0.0012
10−4 100 0.0028

10−6 100 0.0031
10−6 200 0.00082
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Problem 2
Same ODE as problem 1:

ε2u′′
− u +

(

1 + x2
)

u2 = 0; u′ (0) = 0; εu′(1) = −u(1).

but it has another solution of the form u = w(x−x0

ε ) where x0 is approximately scales like

x0 ∼ ε
1

2
ln

(

30

εx0

)

+ O(1/ ln(ε))
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Three different scales

• To leading order, x0 ∼
1

2
ε ln(30/ε) has O(ε ln 1/ε)

• The extent of the spike has O(ε)

• The outer problem has extend O(1)

• The relative error in the asymptotics of x0 is O(1/ ln ε−1);

• This means that to asymptotics with numerics, we must take 1/ ln ε−1
∼ 0.1 =⇒

ε ∼ 10−5!!!!

• Challenge: can you compute with ε ∼ 10−4?

• Maple, matlab all fail for this problem when ε ∼ 10−3.
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Problem 3

0 = urr +
2

r
ur − u + u2(ε + r), u′(0) = 0, u′(∞) = 0. (3)

• THEOREM: In the limit ε � 1, Let r0 � 1 be the large solution to the equation

ε ∼ 30r2

0 exp (−2r0) .

Then there exists solutions of (3) of the form

u(r) ∼
1

r0

w(r − r0)

• Error is expected to be of O(1/ ln(1/ε)). To validate results, must take extemely small
ε; for example if ε = 10−3 then r0 ∼ 5, is not so small

• Standard codes [matlab, maple] all fail even for ε = 10−2 [r0 ∼ 5.5].
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Solve for ε instead
• Instead of fixing ε and solving for r0, fix r0then solve numerically the problem (3) first

on [0, r0] with u′ (r+

0
) = 0 and on [r0,∞]; with u′(r−

0
) = 0.

• Additional constraint u
(

r−
0

)

= u(r+

0
) determines ε.

• Can get an accurate answer up to r0 ∼ 9.5. The method fails for bigger values of
r0 since the difference between u

(

r−
0

)

− u(r+

0
) becomes smaller than the machine

tolerance.

r0 ε
Solution r0 to
ε = 30r2

0e
−2r0

%err

4 0.05544 4.603 15.09%
4.5 0.02965 5.018 11.52%
5 0.015065 5.451 9.02%
5.5 0.007326 5.898 7.24%
6 0.003441 6.357 5.95%
6.5 0.001569 6.825 5.00%
7 0.0007028 7.297 4.25%
7.5 0.0003080 7.776 3.68%
8 0.0001336 8.256 3.20%
8.5 5.704e-5 8.74 2.83%
9 2.41e-5 9.227 2.52%
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Discussion

• When splitting the integration range, take the splitting point to have order l = O(ε ln ε)

• Problems with sharp interior boundary layers whose location depends on ε are difficult
for standard solvers

• Matlab bvp solver is currently better than maple’s [as of Aug 2010]

• The asymptotics of the problem should be reflected in the nume rics; the
analytical insight is invaluable when looking for numerica l solution, especially
for nonlinear problems.
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