Boundary value problems with very sharp
structures: numerical challenges
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Introduction

e Singular perturbation problems depend on a small parameter € which typically
premultiplies the highest derivative.

e As ¢ — (), the problems exhibit localized structures such as boundary layers, corner
layers, spikes, interfaces.

e Typically, the localized structure has the size O(¢); the solution is relatively smooth
outside the localized region.

e Standard codes to solve BVP may have difficulty resolving localized structures:
typically, meshsize scales with 1 / E.

e Example: a standard code requires 10,000 meshpoints when ¢ = 1077



Problem 1

Solve the problem

Eu' —u+ (1+2°)u”=0; ' (0)=0; e/(1) = —u(l).

Asymptotic solution:  Transform ;
1.2

L = &yY; }

i

Uy — u+ (14 ey’ f

0.8

so that . ;
u(z) ~ w(—) 0.6

€ ]

where 0.4-
3 5

w = §:sech2 (y/2) solves wy,—w-+w* = 002
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e Note that
w~ O(1) for y=0(1)

but it decays,
w ~ 6e Y forlarge y.
e This exponential decay can cause trouble for BVP solvers.
e The solution exhibits two different spatial scales.

e Maple BVP solver: meshsize scales like 1/¢.

e Matlab does much better [see below]



Split-range method

Split-range method

e Choose [ € [0, 1],
eIkl

e On [0, ], (inner problem) transform:
r=ly, uft) =u(y)
e On [/, 1], (outer problem) transform:

=1+ (1=Dy, ut)=exp (M)

3
e We get a 4-dimensional BV P for u,% on y € |0,1]. The boundary conditions
become:
a'(0) =0, a'(1)=-1
A u(0) .
u(l) =exp | —= ] (continuity of u)
3
(

a'(1) 1 exp (@) @' (0) (continuity of 1)

e The parameter [ is chosen by trial and error. Global tolerance is set to 10-6; Maple’s
dsolve/bvp is used with adaptive gridding.
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Meshsize scaling laws

- split range split range Standard Maple | Standard Matlab
(I = 9¢) ({ =4eln %) (adaptive mesh) | (adaptive mesh)

0.1 21 21 51 50

0.05 21 24 87 37

0.025 21 21 106 41

273 x 0.1 |21 26 178 38

271 x 0.1 |21 29 376 41

270 % 0.1 |30 30 792 42

270 % (0.1 |58 32 error 50

277 % 0.1 [119 31 39

278 % 0.1 | 226 32 35

279 % 0.1 [472 33 35

2710 % 0.1]946 34 93

271 % 0.1 ] error 35 61

2716 % 0.1 41 36

2717 % (.1 42 38

e The “good* [ scaleslike [ = O(elneg)!
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Understanding (= O(elne)

e Consider a simple problem

ElUgy +uy =1, u(0) =0=u(l). (1)

e Asymptotic composite solution is:
u~exp(—z/e)+x—1 2)

e There is a boundary layerat0Oas ¢ — 0 :
0.2 0.4 0.6 0.8 1




Error analysis, uniform mesh

e Discretize: let h = 1/N and approximate eu,, + u, = 1 by

Ui—1 + U1 — 2u4 N Uity — U1 _ 1
h? 2h
e Interpolate « so it is defined on the whole interval [0, 1] with @ (ih) = ;.

up =0 =uy.

e Next, note that
~ /11

— "2y O(hY);

Uil + U — 2U;

h? 12
~ ~ ~ I
Ujr1 — Uj—1 N o U 4
=u +h"— + O(h”);
2h 6 ( )
e So consider the error
w=u— U
Then
,&//// ,&///
EWyy + Wy ~ h° (eﬁ + F)
U//// U///
~h | e—+ —
( 12 6 )
1 h?
~ T3 P (—xz/e)



e The error w = u — u satisfies

1 h?
EWgy + Wy ~ —15 03 &P (—x/e);  w(0)=0=w(1)
Note the resonance! The solution is
1 h?
W~ 5T exp (—x/e);

Maximum occurs at x = £; max error is

Conclusion: N = O(1/e¢) for uniform mesh!!!



A two-sized mesh:

Take [ € (0, 1) and discretize using uniform mesh of N; points inside [0, [] and another
uniform mesh of Ny, = N — Nj points inside [/, 1].

The error function w = u — u then satisfies:

/ l2
T 36_‘”/’5, x € (0,1)
5w"+w’~——< 182
12 (1 — l) /e
T e (1)
\ 2
Define
r = NQ/Nl;
and write
1 r
N1 =N ; N2 =N
1+7r 147

Assuming [, ¢ < 1, solving for w we obtain:

L (147 ( x> 1211 /e

1 (1 2 —x/e 1 2 ,—x/e
(1+47) {e :1:+(1_ )le (el/g—l—I—E)},xE[l,l]
9

12 N2 r2 g3 r2j27 g2
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Given ¢, IV, we want to determine [, r which minimizes the maximum of w.

The proper scaling is
1
[ =¢eln—p;
€

The maximum of w is attained at x* ~ ¢ < [; given by

w(z®) ~ =T {exp(—l) (ml) p2+sp2i2(1—exp<—1))}

12 N2 € r

Minimizing with respect to p and r, we get:

p=2r=( 1)1/3 (1n<11/s>)2/35

2
, 1 ln%
min max w ~ —

lr T 3e N

Conclusion: N = O(In(1/¢)) for two-sized mesh!!! [this is exponentially better than
N = O(1/¢) scaling of the uniform mesh!!¢
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Example 1: € := 1075 N = 200.

e The optimal two-sized mesh is:

| =36x107°
r=0.108 = N; = 180, N, = 20

e Numerical error = 0.0013. Predicted error = 0.0014. Uniform mesh: Would need
N = 10° meshpoints to get same accuracy!

Example 2: Direct comparison of uniform vs. split-range:

N error error
c (unif. mesh) | (optimal two-sided mesh)
0.02 [100]0.0080 0.00053
0.01 |100]0.035 0.00072
0.005 |100|0.14 0.00092
0.0025 | 100 | FAIL 0.0011
10~% [ 100 0.0012
10~* ]100 0.0028
10°% [100 0.0031
10% |200 0.00082




Problem 2

Same ODE as problem 1:
2

but it has another solution of the form u = w(f” ;’7

2y~ g; In ( - ) £ O(1/In(e))

EX

) where x is approximately scales like

eps=0.00625, x0=0.03681
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Three different scales

e To leading order, z ~ 3¢ In(30/¢) has O(eIn1/e)

e The extent of the spike has O(¢)

e The outer problem has extend O(1)

e The relative error in the asymptotics of xq is O(1/Ine™!);

e This means that to asymptotics with numerics, we must take 1/ In el v (01l =
g ~ 1072111

e Challenge: can you compute with € ~ 10747

e Maple, matlab all fail for this problem when & ~ 1073.
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Problem 3

2
0=t +-u, —ut+u*(c+r), u(0)=0,u(c0)=0. 3)
r

e THEOREM: In the limit ¢ < 1, Let 9 > 1 be the large solution to the equation
e ~ 3075 exp (—2r¢) .

Then there exists solutions of (3) of the form

u(r) ~ iw( 7

e Error is expected to be of O(1/1n(1/¢)). To validate results, must take extemely small
e: for example if ¢ = 1073 then ry ~ 5, is not so small

e Standard codes [matlab, maple] all fail even for € = 1072 [ry ~ 5.5].
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Solve for ¢ Instead

e Instead of fixing € and solving for rg, fix rothen solve numerically the problem (3) first
on [0, 7] with «’ (rg") = 0 and on [ry, co]; with u/(r; ) = 0.
e Additional constraint u (r; ) = u(r;) determines ¢.

e Can get an accurate answer up to g ~ 9.5. The method fails for bigger values of
o since the difference between u (ro_) — u(ry) becomes smaller than the machine

tolerance.
- - Solution 7 to Yerr
g = 30rie 20 ’
4 |0.05544 4.603 15.09%
4.5 | 0.02965 5.018 11.52%
5 10.015065 |5.451 9.02%
5.510.007326 |5.898 7.24%
6 |0.003441 |6.357 5.95%
6.5 | 0.001569 |6.825 5.00%
7 10.0007028 | 7.297 4.25%
7.510.0003080 | 7.776 3.68%
8 10.0001336 | 8.256 3.20%
8.5|5.704e-5 |8.74 2.83%
9 |24le-5 9.227 2.52%
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Discussion

e When splitting the integration range, take the splitting point to have order [ = O(cIn¢)

e Problems with sharp interior boundary layers whose location depends on ¢ are difficult
for standard solvers

e Matlab bvp solver is currently better than maple’s [as of Aug 2010]

e The asymptotics of the problem should be reflected in the nume rics; the
analytical insight is invaluable when looking for numerica | solution, especially
for nonlinear problems.
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