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Introduction

# Singular perturbation problems depend on a small
parameter ¢ which typically premultiplies the highest
derivative.

#® As e — 0, the problems exhibit localized structures such
as boundary layers, corner layers, spikes, interfaces.

# Typically, the localized structure has the size O(¢); the
solution is relatively smooth outside the localized
region.

# Standard codes to solve BVP have difficulty resolving
localized structures: typically, meshsize scales with 1/«.

# Example: a standard code requires 10,000 meshpoints
when ¢ = 107°7.
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Problem 1

Consider the problem

e —u+ (1+ ?)u?=0; ' (0)=0; eu(1)=—u(l).

Asymptotic solution: L4
T 1.2
u(@) ~ w(=) 1
, 08
where |
0.6*:
3 2 04
w(y) = isech (y/2) solves °*
0.2

Wyy — W + w? = 0. 0 0.2 0.4 0.6 08 1
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# Note that w decays for large v,
w(y) ~ 6e~ Y forlarge vy.

# This exponential decay causes trouble for BVP solvers.
# The solution exhibits two different spatial scales.
# Standard BVP solver: meshsize scales like 1/«.
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Split-domain method

# Choose !l € [0,1],
ek lx1

# On [0,/], (inner problem) transform:

z =1y, u(t)="1u(y)

# On [/, 1], (outer problem) transform:

o= (1= Dy ult) = exp (22

E
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# We get a 4-dimensional BV P for u,u on y € [0, 1]. Two
addional constraints impose continuity of v and «" at {:

@0)=0, @(1)=—1
u(1) = exp (@) (continuity of u)
@/51) - - (11_ e (@) #/(0) (continuity of u)

# The parameter [ is chosen by trial and error. Global

tolerance is set to 10~°; Maple’s dsolve/numeric
collocation code is used with adaptive gridding.
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Meshsize scaling laws

£ standard =9 [=4elnd
0.1 51 21 21
0.05 87 21 24
0.025 106 21 21
273 x 0.1 178 21 26
24 x0.1 376 21 29
275 %01 792 30 30
26 % 0.1 error 58 32
277 % 0.1 119 31
278 x 0.1 226 32
279 % 0.1 472 33
2-10 % 0.1 946 34
21 % 0.1 error 35
2-16 % 0.1 41
2—17 % 0.1 42

ORTVERSITY 2-18 % 0.1 error

Sinaular BVP = p. 7/2



Problem 1b

r—XIQ

Same as Problem 1, but it has another solution of the form u ~ w (—)

1 (30)
5130:8—111 —
2 ET(

eps=0.00625, x0=0.03681

S

where y, satisfies:
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Challenge: Compute Probelm 1b with ¢ = 10~%.
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Two different scales

To leading order, zg = 3 In (£2) has order O(cIn¢)
On the other hand, spike extend is of O(¢).
The ratio of two scales is O(1/1Ine¢).

e o o o

This means that to compare asymptotics of Problem 2,
we must take ¢ exponentially small!
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Problem 2

Find the principlal eigenvalue of:

A¢ + \¢ = 0 Inside B\ B:
¢ =00n JB;
O, = 0 0N 0B,

In the limit ¢ — 0.
This is equivalent to an ODE BVP:

(rép), + Ar¢g=0; ¢(e)=0; ¢'(1)=0 (1)

DALHOUSIE
IIIIIIIIII

Sinaular BVP = p. 10/2



0.1 Asymptotic solution

Define
B 1
= Indi
9
Note that
e n Kl

Two-term asymptotic form of the eigenvalue:

3
)\asymptotic ~ 2n + 5772 (2)

2
b~ \ (% In(r/e) — %) (3)
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Derivation of asymptotic solution: Assume )\ < 1 and
expand in \ :

O=14+ A1+ ...
so that
(Tgblr)r + = O;
1+ A1(g) = 0;
¢1(1) =0,
Then

1 1 r r?
~N — — —1 _) — —
P A+2 n(e)
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Solvability condition:

1
A grdr ~ed'(e) ~ +=X
S
1
1 1.1 3
dr ~ —— 4+ ~ln= — =
owrdr e~ o T T 6
2
)\Nl 1 3
e =1
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Exact solution given implicitly by:
Ty (V)
Y5 (vA)
— JL(VN)Yo(VXe) = 0.

¢ = Jo(VAr) — Yo(VAr);

Jo(V )Y (VA)

DALHOUSIE
IIIIIIIIII

Sinaular BVP = n. 14/



Numerical solution, standard formulation

# Solve the "augmented system”,

(rép), +Ar¢ =0;  ¢(e)
)\fr — O§ ¢(1)

0; ¢'(1) =0;
1.

Use )\; =0, ¢; = In(r/e) as initial guess; solve stating
with £ = 0.1 and use continuation.

» Mesh size grows like O(2); the eigenvalue is of

O (1/In¢e). Reason: the solution has a log singularity
near x ~ ¢ (looks like In % ).

#® Adaptive mesh doesnt seem to help (at least not using
Maple’s dsolve)

DALHOUSIE
IIIIIIIIII

Sinaular BVP = n. 15/7



Numerical solution, transformed formulation

# Change variables

t=Inr;  ¢(r) = ®(b);

e ")+ XD =0; ®(lne)=0; P (0)=0 (4
# The resulting problem solved with standard code
# Global error tolerance of 1076 is used.
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Comparison of meshsize

£ standard/fixed standard/adaptive Transformed
0.05 76 64

0.01 407 120 19
0.005 880 274

0.0025 1903 573

10—3 1623 18
10~ 19
107° 21
10~° 25
10~7 29
10~% 30
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® Fore =109 we get

e=10"1" n=0.0434294
)\numeric — 0089757
Aasymptotic,1 = 0.086850 = 27

3

Conclusion: two-term expansion seems to be correct.
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Problem 3: Gierer-Meinhardt system in 2D

1 1
2 (urr—k—ur) —u+u/v=0; v+ -v,—v+u*=0; recl0,L]
r r

0.4\"\
1
0.3
0.2
N
0'17 \
| ‘\
0 0.2 0.4 0.6 0.8 1 1.2

e = 0.025; thin lines are one and two-order asymptotic approximation.
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Asymptotic solution:

e
£
)
£, r<e
v s Ky(L)
1 0
\ 5% [Ko(?“)— ]6(L) Io(T)], r>¢
where
1 2 : /
wyy—l—gwy—w—kw =0 withw' (0) =0, w—0asy — o
and
1
§~& +né1+--; =T
==
1
£y = — 0.20266265

[ w?(s)sds
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# To 5 decimal places,

& = (0.38330 — 2Hy) &

where
Ky(L)

(L)

Ho=1In2 —~ —

# |eading order asymptotics have O(1 Ve ) error

# If ¢ =0.025 then n = 0.27, not very small!!

# To verify & numerically, we need to solve this problem
for “exponentially small” ¢, say ¢ = 1073, 1074, 107°.
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Numerical solution using standard formulation

» To handle the singularity at r = 0, write u,, + tu, = f(u);
then expand around r = 0, for small h the BC becomes:

W (k) ~ 5 F (W) + ()

® Choose h =10"% L =1;

# Using continuation and adaptive grid, we can get
solution up to e = 1073 (n = 0.14476) but it requires 1500
meshpoints with L = 1, global error = 10—

# To better verify & numerically, we would like to take
n=01= e~45x107°.
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Numerical solution using split domain:

® Choose h = 10~ 2¢, and shift the domain
r=h+(L—h)t t=]|0,1].

® Choosel e |0,1], ex Ik 1.
# On [0,[], transform:

t=1ly, u(t)=1u(y)

o On |/, 1], transform:

t=1+(1—1)y, u(t)=exp (M)

E

® Using!=4elni..
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Comparison of mesh size

€ n=1/In(1/e)

0.01 0.217
0.005 0.189
1073 0.145
5x 107% 0.132
1074 0.11

Standard Split domain

60
132
709

> 2000

44
102
352
704

> 2000

# Here, split domain is only a slight improvement!!!

# Challenge: Can you compute with e = 10=7?
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Challenges

# Automate layer detection and domain splitting

# How to choose the optimal [ numerically?

# What is the theoretical optimal scaling law for the mesh
size, as a function of £?

# How to find the optimal transformation numerically?

# |Interior spikes?

# Challgenge: Compute Problem 1b with e = 107°.

# Challgenge: Compute Problem 3 with e = 10~ 7.
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