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1 Introduction

The Gierer-Meinhardt model is a reaction-diffusion system:

uP u”
EAu—u+—=0 Av—v+—=0
v4 v’

with
e K 1.

e Comes from mathematical biology (pattern formation in hydra)

e \ery popular with mathematicians because it is non autonomous [no max principle, variational for-
mulation] but still can be studied analytically.

e Simplest solutions are spikes; stability analysis very intricate [Doelman, Iron, Kaper, TK, Kowalczyk,
Muratov, Ward, Winter, Wei];

e Many other solutions exist: asymmetric spikes [Doelman, Ward, Wei, Winter]

e Generalizations: heterogenous diffusion coefficients [Ward, Wei, Winter]; multiple activators/inhibitors
[Wei, Winter]

e \What about non-spiky solutions?
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2 Ring solutions

Consider radially symmetric solutions of GM system inside a ball of radius R:

2 N—-1 u’ .
8 (UTT_F r UT-)_U—'_E—O’

vw+¥vr—v+§j—::0;
V'(0) =o' (R) =4'(0) =u/(R) =0

We seek solutions that concentrate on a surface of a sphere of radius (. In 2-D they look like this:
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Theorem 1: Let

Mp(r) :=—-(N —1 + + :
R(r) 7“( q Ji(r)  Jor(r)
where
J5(R)
J = Jo(r) — = J0(r);
o.r(1) = Jo(r) 7 (R) 1(r);
and .J;, J, satisfy
N —1
JTT+TJT—J:O

with
J5(0) = 0; Ji(r) ~In(r) as r — 0.
Suppose that r( satisfies
Mp(ro) = 0.

Then there exists a ring-type solution concentrated at the radius r = r, of the form

u(a;)NCw(x‘ _TO), e—0

€
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where C' is some constant and w is the ground state
Wyy — w + w? = 0; w~ Ce Wy = o0

Remark:
2—-N 2— N - 2

Ji(r)y=r>2 L(r), Jhr)=r2 K,(r), v = ——

where I, K, are modified Bessel functions of order v.
Remark: In the case of N = 3, J;, J> can be computed explicitly:

sinh r e "

) J2<T) -

Ay

J) =
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Proof (Standard GM in 2d): In radial variables:

5 51 u?
EUyr + U —u+ — = 0;
r v

Inner problem:

r = 1o+ ey;
u = Up(y) +elily) +---;

Leading order:

0 = ony—Uo—i—

70;
Uo(y) = Sw(y); wy, —

I
o

/Uf,"r—l_ _vr -
T 3

v="V+Vi(y) +

U2
- Voyy =0

w + w? = 0;

Voly) = &; (to be determined later)

O (¢) terms:

Uy Uz
0=Uy, —U + 270U1 Vg

‘/1—1_ U()ya ‘/iyy+Ug:0
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_ /y Ug
‘/1y = . 0 , +A (3)
odd
1
Uryy — Ur + 20U, = w?Vy — §T—wy 4)
0

Multiply (4) by w, and integrate by parts:

1
0= AV
/wyw 1 gr() ’LUy
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To determine &, A we look at the outer problem:

9 €

2 2
Upp + 1vr — v = —u—; LY Cé(r —ry); C =& (/ w%iy) = 6£2.
r

1 JQR(T())J1<T), if r < 7o
v = 66°G(r,m9) Where Gr(r,m) = 7 ’ i |
&Gr o) r{r> o) Ji(r0)J5 p(ro) — J1(ro)J5 p(r0) { Ji(ro)Jo.g(r), ifr>ro.

Matching: In inner variables:

o= 70+ EyY;
G<T+T) |fy>0
_ ee20v( 2 BIVARS
v = 66°G(ry,ro) + cy6é {GT(TJ,To)y ify <0

5 — 6€2G<T07 700)
—E3+ A = 668G, (rg,m0); €3+ A=68G,(ry,m0)
A = 6¢° (Gr(rar, ro) + G(rq 7“0))

Finally,
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Theorem 2: Let
p—1
a=(N—1)——.
( ) .

Suppose that N > 3. There are three cases.

(1.a)If N —2 < a < N — 1 then there exists R, such that if R > R, then Mz(r) = 0 has exactly two
solutions 0 < 1 < 19 < R, and if R < Ry, then Mpz(r) = 0 has no solution. Moreover, for R > Ry,
M&(Tl) < 0, M/R<T2) > ().

(1.b) If a > N — 1 then Mp(r) = 0 has no solution for any R.
(1.c) If a < N — 2 then My (r) = 0 has precisely one solution r; for any R and moreover M}, (1) > 0.

Suppose that N = 2. Then there exists a number a,, > 1 whose numerical value is a,, = 1.06119 such
that one of the following holds:

(2.a) If a € (0, ax) then the situation is the same as in case (1.a).
(2.b) If @ > a., then My(r) > 0 for any R.

(2.c) If a = a then Mg(r) > 0 any R < co. When R = oo, there exists a number r;, such that
My (rg) =0= M (ry), and Mg(r) > 0 for any r # ry.

As the statement indicates, the situation for NV = 2 is very different from N > 3. The case N = 2 and
a € (1,as) has no analogue in higher dimensions and is considerably more difficult.
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Sketch of proof (N > 3) Here is My, for several R values:
37

5

1-
).5

Step 1. My, is positive for small R. For small R, expand

N
1 — 7,

1 rJ”)’ 7“0:%6(0,1); R<1 (5)
vzt N

rMpg(r) ~a— (

rhsis a — N 4+ 2 when r = 0 and increases from there (hence never crosses 0)
Step 2. Since J; z(R?) = 0, it follows that Mz(R) = 5 + ﬂg But J; is a strictly increasing and positive
function so that My (R) is always strictly positive.
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Step 3. My(r) has a double root iff

' Jé r a i r
F(AMaalr)) = —ah(Paatr; 2D = -8 - 20 ©)

Eliminate R to get:

g(r) == (a® — a(N = 2) — 2r°)J{(r) + 2raJy(r)J (r) + 2r*J3(r) = 0. (7)
g(r) satisfies
rg +1r2Cg = JH(r)(B — Ar?) (8)
with
A=4(N—-1—-a), B=02N—-a—4)(a+2—N)a, C=2N—-4—a 9)
Moreover

9(0) = ala = N +2) > 0; g(o0) — —o0

so g has at least one root. Let r; be the first root of ¢. then ¢'(r1) < 0 so rhs(8)<0. But rhs changes
sign only once (and is negative for » > r;); so g cannot have any more roots.
Step 4. For sufficiently large R, My has a single root (due to large-argument expansion of M. (r)).
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The situation is more complicated for N = 2. Difficult theorem:
e M (r) has exactly 1 rootif 0 < a <1

e M (r) has exactly 2 roots if 1 < a < a. =1.06

e M. (r) has no roots if a > «a..

01

205

L
— — ——

01

H2 -
a=08,1,1.03,a.,1.1

When 1 < R < oo, there is a sharp transition of ry as a crosses 1.

13
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3 Smoke-ring solutions

Consider GM in all of R?; we seek solutions that concentrate on a ring. By taking a cross-section in
cylindrical coordinates, this becomes a 2-D problem in (r, z) space:

X
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Define the logarithmic scale:
—1

= Ine

Note that we have the relationship

l<e<n<l.

After proper scaling, the standard GM system is:

1 2 1
0=¢’ <A(r,z)u + _Ur) —u+ U_; 0= (A(r,z)v + _Ur> — U+ Qu2
r

T v

Outer problem: wu is a spike at xy = (rg, zy) SO we estimate

T2~ Co(x — zy), where C = 1 ldz

52
So
u=CG(x, )
where G is the Green’s function which satisfies:

1
AG + ;GT — G = —i(z,x0).

15

(10)

(11)



Ring and smoke-ring patterns in Gierer-Meinhardt system 16

Descent from 3D: G is a convolution of the 3D Green’s function along a ring of radius r :

—|z—2'|
G(x, o) —/ ‘ R(2") dx’
R

s 4r|x — 2|
where R(z’) is the ring of 2d delta functions:

T0 /27 exp[—(r? + r§ — 2rrgcosw + (2 — 20)%)"?]
A7 Jo Am(r? + 1§ — 2rrgcosw + (z — 2)?)1/2

G(T,Z,To,Zo) — dw (12)

After change of variables we have:

/ exp|—(a — B)7]dT
\/7' J+ 7)( 1+5+7‘)(1—7‘)

B=r—ro) + (=2 a=[r+r)+(z—2)" 0=

7“()6 =B

, Where

25
a—f

< 1;
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After 7 pages of complicated computations we get the following expansion.

1
G(xog+ey,r9) ==— |1 —nln R+ nFy+ a (=1 +nln R+ nFi(rg)) + O(e?)
2mn 270
where
T — X 1
Y - (p, 2); Y| PP+ 2% n (/5
Fo(ro) = g1(2r) + Indry where gy(2r) / (eXp(_QTO” 1)dt
ro) = r n4r ro) = — —
0lTo gi1(4Tro 0 g1\47g Tm -

Fi(rog) = 2rogy(2ro) — g1(2r¢) — Indrg + 1

The outer solution in the inner variables becomes:

v~ € 1—nlnR+nFo+STp(—l+nlnR+nF1(ro))] |yl — o0
0

where £ is given by

The smoke-ring radius r, will be determined by O (¢n)!! This requires an expanding

§=CEp+nén +0(e).

|

17

(13)

(14)
(15)
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r — Xy
Inner problem, y = ;

E
Expand in € while treating n as a constant:

u(z,t) = U ="U(ly|) +eli(y) +- -
Viz,t) =V =V(ly]) +eVily) + - -
€= &tebto
The leading order equations are
0=AUy — U+ %
0= AVy +nU?

Next we expand in 7 :

Uy = Upt +nU; Vo = Vo1 +nVix;
So = o1+ 101
We get

1
= 7 —0.20266 where Aw —w +w? =0
500 fo w2(8>8d8 w w w

18
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After 2 pages of computation,
Eo1 = &0 (a0 — 2Fp) ;o = 0.3833

This gives us a correction to O (en) term:

)
v~ (&0 +101) (1 —nlnR+77Fo+2—2(—1+nlnR+nF1>)

= £, (1—nlnR—n(F0+a)+2€—f0(—1+nlnR+n(F1+2F0—a))>

Next we must study the O (¢ + en) terms... After 4 more pages of solvability computations involving
adjoint operator... we finally get the equation for r :

Fi(ro) + 2Fy(rg) —a+ B =0, where a =0.3833, 8 =0.087



