Ring patterns in patrticle aggregation models
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Introduction

We consider a simple model of particle interaction in 2D
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e Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

e Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

e Mathematically F(r) Is positive for small r, but negative for large 7.
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e Commonly, a Morse interaction force is used:

F(r)=exp(—r) — Fexp(—r/L); F<1,L>1 (2)



Boundedness, h-stability

e For afixed IV, any initial configuration converges to a bounded steady state [GP 2004]

e In the limit N — oo, two possibilities exist: either the particle cloud size grows with
N [h-stable case] or its is bounded independent of NV [catastrophic regime]. [Ruelle,
1969]

- H-stable regime: the steady state resembles a hexagonal lattice [Topaz et al,
2006], its diameter is of O (\/ N)

- Catastrophic regime: doubling /N doubles the density but size and shape is
independent of N — o0.

e Here, we want to take N — 00, so we are interested in a catastrophic case.

e For Morse interaction force F'(r) = exp(—r) — Fexp(—r/L) :

- In 1D, catastrophic regime if F'L? > 1, else h-stable.

- In 2D, catastrophic regime if F'L3 > 1, else h-stable.



Example of h-stable vs. catastrophic

H-stable, F(r)=exp(-r) - 0.7 exp(-0.9r)

N=50, r=10.15 N=100, r=14.15

catastrophic, F(r)=exp(-r) - 0.7 exp(-0.5r)

N=50, r=0.607 N=100, r=0.622



F(r)=tanh((1—7r)a)+b

Tanh-type force
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Ring-type steady state

e Seek steady state of the form x; = r (cos (275 /N) ,sin (275 /N)), j=1...N.

e In the limit N — oo the radius of the ring must be the root of

S

I(r) = / F(2rsin @) sin 0df = 0. 3)
0

e For Morse force I'(r) = exp(—r)—F exp(—r/L), such root exists whenever F'L? >
1 [coincides with 1D catastrophic regime]

e For general repulsive-attractive force F'(r), a ring steady state exists if F'(r) < C' < 0
for all large 7.

e Even if the ring steady-state exists, the time-dependent problem can be ill-posed!



Continuum limit for curve solutions

e If particles concentrate on a curve, in the limit N — 0o we obtain

< 2o Zat >
Pt = p Qt , a=Kxp (4)

|24
where 2 («; t) is a parametrization of the solution curve; p («; t) is its density and
z2(d) — 2(a)

Kxp= [ F(|z(a') = z(a)]) —————p(c/,1)dS(a). (5)
|2(a) = z(a)]

e Depending on F'(r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

e \We used a Lagrange particle-based numerical method to resolve (4).
- Agrees with direct simulation of the ODE system (1):
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Local stability of a ring

e Linearize: z(«,t) = rexp(ia) + exp (At) p(a), ¢ < 1.

e Ring is stable of Re (A) < 0 for all pair (\, ¢). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

e )\ is the eigenvalue of

I(m) = %
L(m) = =

Mim) = |

[ ['(2r sin 6)

Il(m)

| 2rsinf
[ ['(2r sin 6)
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+ F'(2rsin )

— F'(2rsin6)
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T m=2,3,... (6)
sin? ((m + 1)6) do; (7a)
[sin® (mf) — sin*(0)] df.  (7b)

e Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of

the circle.
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Quadratic force F(r)=r —r?

e Computing explicitly,
(4m4 —m? — 9)
(4m2 — 1)(4m?2 — 9)
3m?(2m?* + 1)

det M (m) = (I — 9)(dmZ — 12 >0, m=2,3,...

tr M (m)=— <0, m=23,...

e Conclusion: ring pattern correspondingto ~ F'(r) = r — r* is locally stable

e For large m, the two eigenvalues are \ ~ —i and \ ~ —% — 0 asm — 00. The

presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.
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General power force

F(ry=r"—r? 0<p<gq

e The mode m = oo is stable if and only if pg > 1 and p < 1.
e Stability of other modes can be expressed in terms of Gamma functions.

e The dominant unstable mode corresponds to m = 3; the boundary is given by

0 =723 — 594(p + q) — 27(p* + ¢*) — 431pg + 106 (pg® + p*q) + 19 (pq + pq*)

+10 (p’¢” +p°¢°) +6 (p° + ¢°) + p’¢’;

e Boundaries for m = 4.,5,... are similarly expressed in terms of higher order

polynomials in p, q.
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(In)stability of m > 1 modes

e If A\(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed .

e For ill-posed problems, the ring can degenerate into either an annulus (eg. F(x) =
0.5+ z — %) or discrete set of points (eg F'(z) = z'* — %)

e . if F(r)is C* on [0,2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F(0)=0, F"(0)<0 and (8)
/2 [ F(2rsin ) e
/0 ( g F'(2r sin (9)) df < 0. (9)

e Ring solution for the morse force F'(r) = exp(—r) — Fexp(—r/L) is always ill-
posed.
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Under construction...

e “Sphere patterns” in 3D and their stability
e What about global stability of rings?

e Forces with sharp transition can produce exotic patterns; examples:

- Flower: F'(x) = max(min(1.6,(1-x)*4),-0.1)
- Exotic fish: F'(x) = max(min(1.6,(1-x)*6),-0.3)

- Fuzzball: F'(x) = max(min(1.6,(1-x)*10),-0.05)
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