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Localized structures belong to the class of dissipative structures found far from equilibrium. Con-
tributions from the most representative groups working on a various fields of natural science such
as biology, chemistry, plant ecology, mathematics, optics, and laser physics are presented. The aim
of this issue is to gather specialists from these fields towards a cross-fertilization among these active
areas of research and thereby to present an overview of the state of art in the formation and the
characterization of dissipative localized structures. Nonlinear optics and laser physics have an
important part in this issue because of potential applications in information technology. In particu-
lar, localized structures could be used as “bits” for parallel information storage and processing.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2786709�

This Focus Issue is devoted to recent progress, new ideas,
and novel techniques related to the study of localized
structures (LSs) in spatially extended systems. It gathers
contributions from various fields of nonlinear science: bi-
ology, chemistry, ecology, mathematics, laser physics, and
optics. Many systems in nature can support LSs. Ex-
amples include laser-generated pulses in optical cavities,
animal skin patterns, vegetation patches in arid and
semiarid landscapes, localized chemical spots, metal cor-
rosion, hot spots in microwave heating, and cell aggrega-
tion in chemotaxis.

Localized structures are nonlinear inhomogeneous states
of spatially extended systems that offer short spatial range
correlations in comparison to long-range correlations charac-
teristics of patterns �periodic states�. Their main feature is to
allow the confinement of energy, chemical concentration, or
phytomass density. In optics, for example, light confinement
via LSs can have a broad range of applications in spectros-
copy, communications, information storage and processing,
astronomy, medicine, and biology. In practice, localized
structures appear as spikes, interfaces, spots, pulses, dissipa-
tive solitons, cavity solitons, or autosolitons. They can be
either stationary or time dependent. In the latter case, many
phenomena have been observed, such as spike motion, oscil-
lating solitons, and complex two-dimensional patterns. De-
spite the diversity of situations and contexts in which they
are found, these examples of localized structures share com-
mon underlying causes. Mathematically, LSs can be viewed
as homoclinic or heteroclinic orbits of an underlying dy-
namical system. Generally speaking, dissipative structures
arise from to the balance between a positive feedback

mechanism �chemical reactions, light-matter interaction� that
tends to amplify spatial inhomogeneities, and a transport pro-
cess such as diffusion, thermal diffusivity or diffraction,
which on the contrary tends to restore spatial uniformity.

The spontaneous emergence of spatial patterns out of the
homogeneous steady state goes back to the pioneering work
by Alan Turing within the context of morphogenesis. Tur-
ing’s instability is one of the few universally applicable
mechanism leading to patterns that are intrinsic. The wave-
length is determined by the chemical or physical parameters
and not by the boundary conditions. Not all dissipative struc-
tures share this property. In some reaction-diffusion prob-
lems, the wavelength is proportional to the domain size. Lo-
calized structures are usually excited in the pinning region
involving the homogeneous steady state and the periodic dis-
sipative structures. Therefore, the occurrence of a subcritical
Turing bifurcation is often the prerequisite condition for the
emergence of LSs. Note, however, that there exist other
classes of LSs that can be stable far from any Turing bifur-
cation. By now, a large body of literature exists on the study
of localized structures in biology, chemistry, physics, and
mathematics.

In the last two decades, considerable progress has been
made towards the understanding of these structures. With the
advent of fast computers, many numerical simulations have
confirmed the presence of localized patterns in partial differ-
ential equations models in one or more dimensions. More-
over, LSs have been experimentally observed in several
chemical, optical, and plant ecological systems, and in ma-
terial science.

The purpose of this Focus Issue is to bring together re-
searchers working in all aspects of LS: formation, character-
istics, dynamics, stability, and interaction. We hope that it

CHAOS 17, 037101 �2007�

1054-1500/2007/17�3�/037101/3/$23.00 © 2007 American Institute of Physics17, 037101-1

Downloaded 10 Oct 2007 to 147.83.123.130. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2786709
http://dx.doi.org/10.1063/1.2786709


will lead to a better understanding of this topic and will bring
a cross-fertilization among different fields of nonlinear sci-
ence that evolved more or less independently. The papers in
this issue are grouped by area. Papers 1–5 describe various
theoretical aspects of localized pattern formation. Papers 6–9
are devoted to nonlinear chemical and biological systems.
Finally, Papers 10–18 describe LSs and patterns in nonlinear
optics.

Burke and Knobloch1 describe the homoclinic snaking be-
havior that occurs in the pinning region. They use the para-
digmatic Swift-Hohenberg equation and exploit its varia-
tional structure to discuss the wavelength of LSs. They also
examine stability in a two-dimensional system. For a large
class of nonequilibrium systems, a minimal mathematical
model, i.e., a nonvariational Swift-Hohenberg equation, is
derived by Kozyreff and Tlidi.2 Nonvariational effects pre-
clude the existence of a Lyapunov functional to minimize
and may therefore be important for the stability of LSs.
Nishiura et al.3 examine the interaction of a traveling pulse
with a spatial inhomogeneity. A number of different sce-
narios �pulse splitting, reflection, etc.� are described. A re-
duced equation that captures the motion of the pulse near the
inhomogeneity is derived. The stability of asymmetric spike
patterns in the classical Gierer-Meinhardt model is examined
by Iron and Rumsey.4 A complete discussion of stability near
the point of bifurcation when the asymmetric spikes first
emerge from the symmetric branch is provided. Maini et al.5

perform a stability analysis of Gierer-Meinhardt system with
mixed boundary conditions. A new type of instability is re-
vealed for certain parameter values.

Halloy et al.6 report on the existence and stability of
stable standing-wave patterns in coupled complex Ginzburg-
Landau equations, subjected to parametric forcing. A model
of chemotaxis that incorporates the elastic properties of cells
is presented by Wang and Hillen.7 The resulting model is
studied analytically and numerically. The authors report
novel spike dynamics such as spike insertion. In the context
of plant ecology, Meron et al.8 study vegetation patches in
arid and semiarid landscapes, which are interpreted as local-
ized structures of biomass and water. Spot and stripe patterns
are reported together with a complex bifurcation structure.
The paper by Vanag and Epstein9 reviews experimental and
theoretical investigations of localized structures such as sta-
tionary spots, oscillons, clusters, and moving and breathing
spots in chemical reaction-diffusion systems.

Brazhnyi et al.10 present the existence and stability of
dissipative localized structures in periodically modulated
quadratic media. Localized modes are formed by pump-
signal pairs whose phase difference is a crucial parameter for
their existence and stability. Akhmediev et al.11 perform an
extensive study of the full �3+1�-dimensional spatiotemporal
stable optical solitons. Stationary solutions, rotating, and
time-dependent bound states are reported. An experimental
technique to control position and motion of localized struc-
tures in a single feedback liquid crystal light valve system is
presented by Gütlich et al.12 The interaction of dissipative
optical solitons in active nonlinear fibers with Bragg grating
is addressed by Rosanov and Tran.13 New phenomena are
studied, including the discreteness of moving solitons veloc-
ity. The discrepancy between theoretical predictions and ex-
periments in the region of existence of LS is discussed by

Firth et al.14 A nonlocal nonlinearity is suggested to resolve
this discrepancy. More insight on this crucial and timely
question can also be gained from investigations on snaking
bifurcations reported by Burke and Knobloch.1 A study of
Turing �often called modulational� instabilities in a nonlinear
resonator filled with a slice of left-handed materials, i.e., a
material with a negative refraction index, with either Kerr or
quadratic nonlinearities is presented by Tassin et al.15 A re-
view on solitary pulses in linearly coupled complex
Ginzburg-Landau equations that have a wide spectrum of
applications is presented by Malomed.16 In particular, it pro-
vides a good insight on pulse dynamics in optical fibers.
Pomeau and Le Berre17 discuss an interesting new issue of
the tunneling of quantum localized structures in a twin-core
nonlinear optical fiber. Finally, Brambilla et al.18 discuss re-
cent developments and progress on localized structure for-
mation in a semiconductor based on quantum dots.
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